Scaling and Suppression of Anomalous Quantum Decoherence in Ion Traps


Abstract in English

We measure and characterize anomalous motional decoherence of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of decoherence rate with electrode proximity is measured, and when the electrodes are cooled from 300 K to 150 K, the decoherence rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional decoherence of trapped ions stems from microscopic noisy potentials on the electrodes. These observations are relevant to quantum information processing schemes using trapped ions or other charge-based systems.

Download