Maximizing nearest neighbour entanglement in finitely correlated qubit--chains


Abstract in English

We consider translationally invariant states of an infinite one dimensional chain of qubits or spin-1/2 particles. We maximize the entanglement shared by nearest neighbours via a variational approach based on finitely correlated states. We find an upper bound of nearest neighbour concurrence equal to C=0.434095 which is 0.09% away from the bound C_W=0.434467 obtained by a completely different procedure. The obtained state maximizing nearest neighbour entanglement seems to approximate the maximally entangled mixed states (MEMS). Further we investigate in detail several other properties of the so obtained optimal state.

Download