Do you want to publish a course? Click here

Fermi-Dirac statistics and the number theory

70   0   0.0 ( 0 )
 Added by Jakub Zakrzewski
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.



rate research

Read More

225 - Ettore Vicari 2019
We investigate the particle-number dependence of some features of the out-of-equilibrium dynamics of d-dimensional Fermi gases in the dilute regime. We consider protocols entailing the variation of the external potential which confines the particles within a limited spatial region, in particular sudden changes of the trap size. In order to characterize the dynamic behavior of the Fermi gas, we consider various global quantities such as the ground-state fidelity for different trap sizes, the quantum work statistics associated with the protocol considered, and the Loschmidt echo measuring the overlap of the out-of-equilibrium quantum states with the initial ground state. Their asymptotic particle-number dependences show power laws for noninteracting Fermi gases. We also discuss the effects of short-ranged interactions to the power laws of the average work and its square fluctuations, within the Hubbard model and its continuum limit, arguing that they do not generally change the particle-number power laws of the free Fermi gases, in any spatial dimensions.
We derive a class of generalized statistics, unifying the Bose and Fermi ones, that describe any system where the first-occupation energies or probabilities are different from subsequent ones, as in presence of thresholds, saturation, or aging. The statistics completely describe the structural correlations of weighted networks, which turn out to be stronger than expected and to determine significant topological biases. Our results show that the null behavior of weighted networks is different from what previously believed, and that a systematic redefinition of weighted properties is necessary.
72 - Takato Yoshimura 2018
We study charge transport and fluctuations of the (3+1)-dimensional massive free Dirac theory. In particular, we focus on the steady state that emerges following a local quench whereby two independently thermalized halves of the system are connected and let to evolve unitarily for a long time. Based on the two-time von Neumann measurement statistics and exact computations, the scaled cumulant generating function associated with the charge transport is derived. We find that it can be written as a generalization of Levitov-Lesovik formula to the case in three spatial dimensions. In the massless case, we note that only the first four scaled cumulants are nonzero. Our results provide also a direct confirmation for the validity of the extended fluctuation relation in higher dimensions. An application of our approach to Lifshitz fermions is also briefly discussed.
We study level statistics in ensembles of integrable $Ntimes N$ matrices linear in a real parameter $x$. The matrix $H(x)$ is considered integrable if it has a prescribed number $n>1$ of linearly independent commuting partners $H^i(x)$ (integrals of motion) $left[H(x),H^i(x)right] = 0$, $left[H^i(x), H^j(x)right]$ = 0, for all $x$. In a recent work, we developed a basis-independent construction of $H(x)$ for any $n$ from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the $Ntoinfty$ limit provided $n$ scales at least as $log{N}$; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values $x=x_0$ or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at $ mathcal{O}(N^{-0.5})$ deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest neighbor level statistics.
66 - Fan Zhang , H. T. Quan 2020
Exchange fluctuation theorems (XFTs) describe a fundamental symmetry relation for particle and energy exchange between several systems. Here we study the XFTs of a Kitaev chain connected to two reservoirs in the same temperature but different bias. By varying the parameters in the Kitaev chain model, we calculate analytically the full counting statistics of the transport current and formulate the corresponding XFTs for multiple current components. We also demonstrate the XFTs with numerical results. We find that due to the presence of the U(1) symmetry breaking terms in the Hamiltonian of the Kitaev chain, various forms of the XFTs emerge, and they can be interpreted in terms of various well-known transport processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا