The stabilizing properties of one-error correcting jump codes are explored under realistic non-ideal conditions. For this purpose the quantum algorithm of the tent-map is decomposed into a universal set of Hamiltonian quantum gates which ensure perfect correction of spontaneous decay processes under ideal circumstances even if they occur during a gate operation. An entanglement gate is presented which is capable of entangling any two logical qubits of different one-error correcting code spaces. With the help of this gate simultaneous spontaneous decay processes affecting physical qubits of different code spaces can be corrected and decoherence can be suppressed significantly.
Quantum plasmonic systems suffer from significant decoherence due to the intrinsically large dissipative and radiative dampings. Based on our quantum simulations via a quantum tensor network algorithm, we numerically demonstrate the mitigation of this restrictive drawback by hybridizing a plasmonic nanocavity with an emitter ensemble with inhomogeneously-broadened transition frequencies. By burning two narrow spectral holes in the spectral density of the emitter ensemble, the coherent time of Rabi oscillation for the hybrid system is increased tenfold. With the suppressed decoherence, we move one step further in bringing plasmonic systems into practical quantum applications.
A new class of error-correcting quantum codes is introduced capable of stabilizing qubits against spontaneous decay arising from couplings to statistically independent reservoirs. These quantum codes are based on the idea of using an embedded quantum code and exploiting the classical information available about which qubit has been affected by the environment. They are immediately relevant for quantum computation and information processing using arrays of trapped ions or nuclear spins. Interesting relations between these quantum codes and basic notions of design theory are established.
The recently introduced detected-jump correcting quantum codes are capable of stabilizing qubit-systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical information about which qubit has emitted spontaneously and correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of a family of one detected jump-error correcting quantum codes is shown and the optimal redundancy, encoding and recovery as well as general properties of detected jump-error correcting quantum codes are discussed. By the use of design theory multiple jump-error correcting quantum codes can be constructed. The performance of one jump-error correcting quantum codes under non-ideal conditions is studied numerically by simulating a quantum memory and Grovers algorithm.
This Letter studies the decoherence in a system of two antiferromagnetically coupled spins that interact with a spin bath environment. Systems are considered that range from the rotationally invariant to highly anisotropic spin models, have different topologies and values of parameters that are fixed or are allowed to fluctuate randomly. We explore the conditions under which the two-spin system clearly shows an evolution from the initial spin-up - spin-down state towards the maximally entangled singlet state. We demonstrate that frustration and, especially, glassiness of the spin environment strongly enhances the decoherence of the two-spin system.
Quantum decoherence plays a pivotal role in the dynamical description of the quantum-to-classical transition and is the main impediment to the realization of devices for quantum information processing. This paper gives an overview of the theory and experimental observation of the decoherence mechanism. We introduce the essential concepts and the mathematical formalism of decoherence, focusing on the picture of the decoherence process as a continuous monitoring of a quantum system by its environment. We review several classes of decoherence models and discuss the description of the decoherence dynamics in terms of master equations. We survey methods for avoiding and mitigating decoherence and give an overview of several experiments that have studied decoherence processes. We also comment on the role decoherence may play in interpretations of quantum mechanics and in addressing foundational questions.