Do you want to publish a course? Click here

The Loschmidt echo in classically chaotic systems: Quantum chaos, irreversibility and decoherence

277   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Loschmidt echo (LE) is a measure of the sensitivity of quantum mechanics to perturbations in the evolution operator. It is defined as the overlap of two wave functions evolved from the same initial state but with slightly different Hamiltonians. Thus, it also serves as a quantification of irreversibility in quantum mechanics. In this thesis the LE is studied in systems that have a classical counterpart with dynamical instability, that is, classically chaotic. An analytical treatment that makes use of the semiclassical approximation is presented. It is shown that, under certain regime of the parameters, the LE decays exponentially. Furthermore, for strong enough perturbations, the decay rate is given by the Lyapunov exponent of the classical system. Some particularly interesting examples are given. The analytical results are supported by thorough numerical studies. In addition, some regimes not accessible to the theory are explored, showing that the LE and its Lyapunov regime present the same form of universality ascribed to classical chaos. In a sense, this is evidence that the LE is a robust temporal signature of chaos in the quantum realm. Finally, the relation between the LE and the quantum to classical transition is explored, in particular with the theory of decoherence. Using two different approaches, a semiclassical approximation to Wigner functions and a master equation for the LE, it is shown that the decoherence rate and the decay rate of the LE are equal. The relationship between these quantities results mutually beneficial, in terms of the broader resources of decoherence theory and of the possible experimental realization of the LE.

rate research

Read More

Environment--induced decoherence causes entropy increase. It can be quantified using, e.g., the purity $varsigma={rm Tr}rho^2$. When the Hamiltonian of a quantum system is perturbed, its sensitivity to such perturbation can be measured by the Loschmidt echo $bar M(t)$. It is given by the average squared overlap between the perturbed and unperturbed state. We describe the relation between the temporal behavior of $varsigma(t)$ and $bar M(t)$. In this way we show that the decay of the Loschmidt echo can be analyzed using tools developed in the study of decoherence. In particular, for systems with a classically chaotic Hamiltonian the decay of $varsigma$ and $bar M$ has a regime where it is dominated by the classical Lyapunov exponents
If a magnetic polarization excess is locally injected in a crystal of interacting spins, this excitation would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to equilibrium. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at certain time, say $t/2$, an experimental protocol reverses the many-body dynamics, it would drive the system back to the initial non-equilibrium state at time $t$. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal $M(t)$ recovered locally at time $t$. The degradation of $M(t)$ accounts for these perturbations, which can also be seen as the sources of decoherence. This idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics, ultimately leading to the discussion of irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions and we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in terms of the raw overlap between many-body wave functions. Our results show that as the complexity of the prepared state increases, it becomes more fragile towards small perturbations.
Loschmidt echo (LE) is a measure of reversibility and sensitivity to perturbations of quantum evolutions. For weak perturbations its decay rate is given by the width of the local density of states (LDOS). When the perturbation is strong enough, it has been shown in chaotic systems that its decay is dictated by the classical Lyapunov exponent. However, several recent studies have shown an unexpected non-uniform decay rate as a function of the perturbation strength instead of that Lyapunov decay. Here we study the systematic behavior of this regime in perturbed cat maps. We show that some perturbations produce coherent oscillations in the width of LDOS that imprint clear signals of the perturbation in LE decay. We also show that if the perturbation acts in a small region of phase space (local perturbation) the effect is magnified and the decay is given by the width of the LDOS.
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $hbar/tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with the system, and is characterized by a correlation length $xi_0$ and a correlation time $tau_0$. For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi Golden Rule, $1/tilde{tau}= tau_{c}/tau_{V}^2$, where typically $tau_{c} sim min[tau_{0},xi_0/v]$ with $v$ the particle velocity. Whenever the rate $1/tilde{tau}$ is larger than the Lyapunov exponent of the system, a perturbation independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping the perturbation strength fixed) the fidelity decay becomes slower, and hence, one can protect the system against decoherence.
We experimentally and numerically investigate the quantum accelerator mode dynamics of an atom optical realization of the quantum delta-kicked accelerator, whose classical dynamics are chaotic. Using a Ramsey-type experiment, we observe interference, demonstrating that quantum accelerator modes are formed coherently. We construct a link between the behavior of the evolutions fidelity and the phase space structure of a recently proposed pseudoclassical map, and thus account for the observed interference visibilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا