Liquid state NMR simulations of quantum many-body problems


Abstract in English

Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems such as simulation of physical systems more efficiently than classical computers. Much remains to be done to implement these conceptual ideas into actual quantum computers. As a small-scale demonstration of their capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid state Nuclear Magnetic Resonance (NMR). We carefully designed our experiment so that the resource requirement would scale up polynomially with the size of the quantum system to be simulated. The experimental results allow us to assess the limits of the degree of quantum control attained in these kinds of experiments. The simulation of other physical systems, with different particle statistics, is also discussed.

Download