Do you want to publish a course? Click here

High-multipolar effects on the Casimir force: the non-retarded limit

141   0   0.0 ( 0 )
 Added by Cecilia Noguez
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate exactly the Casimir force or dispersive force, in the non-retarded limit, between a spherical nanoparticle and a substrate beyond the Londons or dipolar approximation. We find that the force is a non-monotonic function of the distance between the sphere and the substrate, such that, it is enhanced by several orders of magnitude as the sphere approaches the substrate. Our results do not agree with previous predictions like the Proximity theorem approach.



rate research

Read More

We show that the dispersive force between a spherical nanoparticle (with a radius $le$ 100 nm) and a substrate is enhanced by several orders of magnitude when the sphere is near to the substrate. We calculate exactly the dispersive force in the non-retarded limit by incorporating the contributions to the interaction from of all the multipolar electromagnetic modes. We show that as the sphere approaches the substrate, the fluctuations of the electromagnetic field, induced by the vacuum and the presence of the substrate, the dispersive force is enhanced by orders of magnitude. We discuss this effect as a function of the size of the sphere.
Hard momentum cutoff is used for estimating IR/UV corrections to the Casimir force. In contrast to the power-law corrections arising from the IR cutoff, one will find the UV cutoff-dependent corrections to be exponentially suppressed. As a consequence of this fact, there is no chance to detect the corrections due to UV cutoff arising for instance from the minimum-length scenarios even if fundamental quantum-gravity scale is taken around $sim$ TeV (as is the case, for example, in various models with extra dimensions).
In the work, the thermal and vacuum fluctuation is predicted capable of generating a Casimir thrust force on a rotating chiral particle, which will push or pull the particle along the rotation axis. The Casimir thrust force comes from two origins: i) the rotation-induced symmetry-breaking in the vacuum and thermal fluctuation and ii) the chiral cross-coupling between electric and magnetic fields and dipoles, which can convert the vacuum spin angular momentum (SAM) to the vacuum force. Using the fluctuation dissipation theorem (FDT), we derive the analytical expressions for the vacuum thrust force in dipolar approximation and the dependences of the force on rotation frequency, temperature and material optical properties are investigated. The work reveals a new mechanism to generate a vacuum force, which opens a new way to exploit zero-point energy of vacuum.
The Casimir force between graphene sheets is investigated with emphasis on the effect from spatial dispersion using a combination of factors, such as a nonzero chemical potential and an induced energy gap. We distinguish between two regimes for the interaction - T=0 $K$ and $T eq 0$ $K$. It is found that the quantum mechanical interaction (T=0 $K$) retains its distance dependence regardless of the inclusion of dispersion. The spatial dispersion from the finite temperature Casimir force is found to contribute for the most part from $n=0$ Matsubara term. These effects become important as graphene is tailored to become a poor conductor by inducing a band gap.
We derive the Casimir force expression from Maxwells stress tensor by means of original quantum-electro-dynamical cavity modes. In contrast with similar calculations, our method is straightforward and does not rely on intricate mathematical extrapolation relations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا