Do you want to publish a course? Click here

Optical Detection of a Single Nuclear Spin

84   0   0.0 ( 0 )
 Added by Kai-Mei C. Fu
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a method to optically detect the spin state of a 31-P nucleus embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the 31-P neutral-donor ground state can be resolved via a direct frequency discrimination measurement of the 31-P bound exciton photoluminescence using single photon detectors. The measurement time is expected to be shorter than the lifetime of the nuclear spin at 4 K and 10 T.



rate research

Read More

When an off-resonant light field is coupled with atomic spins, its polarization can rotate depending on the direction of the spins via a Faraday rotation which has been used for monitoring and controlling the atomic spins. We observed Faraday rotation by an angle of more than 10 degrees for a single 1/2 nuclear spin of 171Yb atom in a high-finesse optical cavity. By employing the coupling between the single nuclear spin and a photon, we have also demonstrated that the spin can be projected or weakly measured through the projection of the transmitted single ancillary photon.
Nuclear spins interact weakly with their environment. In particular, they are generally insensitive to mechanical vibrations. Here, we successfully demonstrate the coherent coupling of mechanics to a single nuclear spin. This coupling is mediated by a silicon vacancy (SiV) centre in diamond, taking advantage of its large strain susceptibility and hyperfine interaction with nuclear spins. Importantly, we demonstrate that the nuclear spin retains its excellent coherence properties even in the presence of this coupling. This provides a way to leverage nuclear spins as quantum memories for mechanical systems in the quantum regime.
We constructed a cavity QED system with a diamagnetic atom of 171Yb and performed projective measurements on a single nuclear spin. Since Yb has no electronic spin and has 1/2 nuclear spin, the procedure of spin polarization and state verification can be dramatically simplified compared with the pseudo spin-1/2 system. By enhancing the photon emission rate of the 1S0-3P1 transition, projective measurement is implemented for an atom with the measurement time of T_meas = 30us. Unwanted spin flip as well as dark counts of the detector lead to systematic error when the present technique is applied for the determination of diagonal elements of an unknown spin state, which is delta|beta|^2 < 2 * 10^-2. Fast measurement on a long-lived qubit is key to the realization of large-scale one-way quantum computing.
We apply the time-convolutionless (TCL) projection operator technique to the model of a central spin which is coupled to a spin bath via nonuniform Heisenberg interaction. The second-order results of the TCL method for the coherences and populations of the central spin are determined analytically and compared with numerical simulations of the full von Neumann equation of the total system. The TCL approach is found to yield an excellent approximation in the strong field regime for the description of both the short-time dynamics and the long time behavior.
Signal reception of nuclear magnetic resonance (NMR) usually relies on electrical amplification of the electromotive force caused by nuclear induction. Here, we report up-conversion of a radio-frequency NMR signal to an optical regime using a high-stress silicon nitride membrane that interfaces the electrical detection circuit and an optical cavity through the electro-mechanical and the opto-mechanical couplings. This enables optical NMR detection without sacrificing the versatility of the traditional nuclear induction approach. While the signal-to-noise ratio is currently limited by the Brownian motion of the membrane as well as additional technical noise, we find it can exceed that of the conventional electrical schemes by increasing the electro-mechanical coupling strength. The electro-mechano-optical NMR detection presented here opens the possibility of mechanical parametric amplification of NMR signals. Moreover, it can potentially be combined with the laser cooling technique applied to nuclear spins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا