We examine a fast decay process that arises in the transition period between the Gaussian and exponential decay processes in quantum decay systems. It is usually expected that the decay is decelerated by a confinement potential barrier. However, we find a case where the decay in the transition period is accelerated by tunneling through a confinement potential barrier. We show that the acceleration gives rise to an appreciable effect on the time evolution of the nonescape probability of the decay system.
We obtain the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation regime when the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation originated from the study based on non-relativistic dynamics of tunneling is overcome. The treatment of the problem suggests revealing insights into condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.
Predictions on fluctuations of hadron production properties in central heavy ion collisions are presented. They are based on the Statistical Model of the Early Stage and extend previously published results by considering the strongly intensive measures of fluctuations. In several of the considered cases a significant change in collision energy dependence of calculated quantities as a result of the phase transition is predicted. This provides an opportunity to observe new signals of the onset of deconfinement in heavy ion collisions experiments.
We study the impact of astrophysically relevant nuclear isomers (astromers) in the context of the rapid neutron capture process (r-process) nucleosynthesis. We compute thermally mediated transition rates between long-lived isomers and the corresponding ground states in neutron-rich nuclei. We calculate the temperature-dependent beta-decay feeding factors which represent the fraction of material going to each of the isomer and ground state daughter species from the beta-decay parent species. We simulate nucleosynthesis by including as separate species nuclear excited states with measured terrestrial half-lives greater than 100 microseconds. We find a variety of isomers throughout the chart of nuclides are populated, and we identify those most likely to be influential. We comment on the capacity of isomer production to alter radioactive heating in an r-process environment.
We study the diffusion of charm quarks in the early stage of high energy nuclear collisions at the RHIC and the LHC. The main novelty of the present study is the introduction of the color current carried by the heavy quarks that propagate in the evolving Glasma (Ev-Glasma), that is responsible of the energy loss via polarization of the medium. We compute the transverse momentum broadening, $sigma_p$, of charm in the pre-thermalization stage, and the impact of the diffusion on the nuclear modification factor in nucleus-nucleus collisions. The net effect of energy loss is marginal in the pre-thermalization stage. The study is completed by the calculation of coordinate spreading, $sigma_x$, and by a comparison with Langevin dynamics. $sigma_p$ in Ev-Glasma overshoots the result of standard Langevin dynamics at the end of the pre-hydro regime. We interpret this as a result of memory of the color force acting on the charm quarks that implies $sigma_ppropto t^2$. Moreover, $sigma_xpropto t^2 $ in the pre-hydro stage shows that the charm quark in the Ev-Glasma is in the regime of ballistic diffusion.
Foreshock transients are ion kinetic structures in the ion foreshock. Due to their dynamic pressure perturbations, they can disturb the bow shock and magnetosphere-ionosphere system. They can also accelerate particles contributing to shock acceleration. However, it is still unclear how exactly they form. Recent particle-in-cell simulations point out the important role of electric field and Hall current in the formation process. To further examine this, we use data from the Magnetospheric Multiscale (MMS) mission to apply case studies on two small (1000-2000 km) foreshock transient events that just started to form. In event 1 where MMS were in a tetrahedral formation, we show that the current density configuration, which determined the magnetic field profile, was mainly driven by Hall currents generated by demagnetized foreshock ions. The resulting time variation of the magnetic field induced electric field that drove cold plasma moving outward with magnetic field lines. In event 2 where MMS were in a string-of-pearls formation, we analyze the evolution of field and plasma parameters. We show that the magnetic flux and mass flux were transported outward from the core resulting in the steepening of the boundary. The steepened boundary, which trapped more foreshock ions and caused stronger demagnetization of foreshock ions, nonlinearly further enhanced the Hall current. Based on our observations, we propose a physical formation process that the positive feedback of foreshock ions on the varying magnetic field caused by the foreshock ion Hall current enables an instability and the growth of the structure.