Light-induced nonlinear terms in the Gross-Pitaevskii equation arise from the stimulated coherent exchange of photons between two atoms. For atoms in an optical dipole trap this effect depends on the spatial profile of the trapping laser beam. Two different laser beams can induce the same trapping potential but very different nonlinearities. We propose a scheme to measure light-induced nonlinearities which is based on this observation.
Quantum systems in Fock states do not have a phase. When two or more Bose-Einstein condensates are sent into interferometers, they nevertheless acquire a relative phase under the effect of quantum measurements. The usual explanation relies on spontaneous symmetry breaking, where phases are ascribed to all condensates and treated as unknown classical quantities. However, this image is not always sufficient: when all particles are measured, quantum mechanics predicts probabilities that are sometimes in contradiction with it, as illustrated by quantum violations of local realism. In this letter, we show that interferometers can be used to demonstrate a large variety of violations with an arbitrarily large number of particles. With two independent condensates, we find violations of the BCHSH inequalities, as well as new N-body Hardy impossibilities. With three condensates, we obtain new GHZ (Greenberger, Horne and Zeilinger) type contradictions.
We develop the method of adiabatic tracking for photo- and magneto-association of Bose-Einstein atomic condensates with models that include Kerr type nonlinearities. We show that the inclusion of these terms can produce qualitatively important modifications in the adiabatic dynamics, like the appearance of bifurcations, in which the trajectory that is being tracked loses its stability. As a consequence the adiabatic theorem does not apply and the adiabatic transfer can be strongly degraded. This degradation can be compensated by using fields that are strong enough compared with the values of the Kerr terms. The main result is that, despite these potentially detrimental features, there is always a choice of the detuning that leads to an efficient adiabatic tracking, even for relatively weak fields.
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed in a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequency of the two lasers. Such arrangement opens new avenues for the study of strongly correlated condensed matter models in ultracold gases.
We develop a scheme to generate number squeezing in a Bose-Einstein condensate by utilizing interference between two hyperfine levels and nonlinear atomic interactions. We describe the scheme using a multimode quantum field model and find agreement with a simple analytic model in certain regimes. We demonstrate that the scheme gives strong squeezing for realistic choices of parameters and atomic species. The number squeezing can result in noise well below the quantum limit, even if the initial noise on the system is classical and much greater than that of a poisson distribution.
We numerically simulate vortex nucleation in a Bose-Einstein Condensate (BEC) subject to an effective magnetic field. The effective magnetic field is generated from the interplay between light with a non-trivial phase structure and the BEC, and can be shaped and controlled by appropriate modifications to the phase and intensity of the light. We demonstrate that the nucleation of vortices is seeded by instabilities in surface excitations which are coupled to by an asymmetric trapping potential (similar to the case of condensates subject to mechanical rotation) and show that this picture also holds when the applied effective magnetic field is not homogeneous. The eventual configuration of vortices in the cloud depends on the geometry of the applied field.
K. V. Krutitsky
,K.-P. Marzlin
,J. Audretsch
.
(2002)
.
"Interference scheme to measure light-induced nonlinearities in Bose-Einstein condensates"
.
K. V. Krutitsky
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا