Do you want to publish a course? Click here

Fidelity balance in quantum operations

196   0   0.0 ( 0 )
 Added by Konrad Banaszek
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

I derive a tight bound between the quality of estimating the state of a single copy of a $d$-level system, and the degree the initial state has to be altered in course of this procedure. This result provides a complete analytical description of the quantum mechanical trade-off between the information gain and the quantum state disturbance expressed in terms of mean fidelities. I also discuss consequences of this bound for quantum teleportation using nonmaximally entangled states.



rate research

Read More

Understanding how to tailor quantum dynamics to achieve a desired evolution is a crucial problem in almost all quantum technologies. We present a very general method for designing high-efficiency control sequences that are always fully compatible with experimental constraints on available interactions and their tunability. Our approach reduces in the end to finding control fields by solving a set of time-independent linear equations. We illustrate our method by applying it to a number of physically-relevant problems: the strong-driving limit of a two-level system, fast squeezing in a parametrically driven cavity, the leakage problem in transmon qubit gates, and the acceleration of SNAP gates in a qubit-cavity system.
We propose $mathrm{SQiSW}$, the matrix square root of the standard $mathrm{iSWAP}$ gate, as a native two-qubit gate for superconducting quantum computing. We show numerically that it has potential for an ultra-high fidelity implementation as its gate time is half of that of $mathrm{iSWAP}$, but at the same time it possesses powerful information processing capabilities in both the compilation of arbitrary two-qubit gates and the generation of large-scale entangled W-like states. Even though it is half of an $mathrm{iSWAP}$ gate, its capabilities surprisingly rival and even surpass that of $mathrm{iSWAP}$ or other incumbent native two-qubit gates such as $mathrm{CNOT}$. To complete the case for its candidacy, we propose a detailed compilation, calibration and benchmarking framework. In particular, we propose a variant of randomized benchmarking called interleaved fully randomized benchmarking (iFRB) which provides a general and unified solution for benchmarking non-Clifford gates such as $mathrm{SQiSW}$. For the reasons above, we believe that the $mathrm{SQiSW}$ gate is worth further study and consideration as a native two-qubit gate for both fault-tolerant and noisy intermediate-scale quantum (NISQ) computation.
We present a new and simplified two-qubit randomized benchmarking procedure that operates only in the symmetric subspace of a pair of qubits and is well suited for benchmarking trapped-ion systems. By performing benchmarking only in the symmetric subspace, we drastically reduce the experimental complexity, number of gates required, and run time. The protocol is demonstrated on trapped ions using collective single-qubit rotations and the Molmer-Sorenson (MS) interaction to estimate an entangling gate error of $2(1) times 10^{-3}$. We analyze the expected errors in the MS gate and find that population remains mostly in the symmetric subspace. The errors that mix symmetric and anti-symmetric subspaces appear as leakage and we characterize them by combining our protocol with recently proposed leakage benchmarking. Generalizations and limitations of the protocol are also discussed.
We analyze the average fidelity (say, F) and the fidelity deviation (say, D) in noisy-channel quantum teleportation. Here, F represents how well teleportation is performed on average and D quantifies whether the teleportation is performed impartially on the given inputs, that is, the condition of universality. Our analysis results prove that the achievable maximum average fidelity ensures zero fidelity deviation, that is, perfect universality. This structural trait of teleportation is distinct from those of other limited-fidelity probabilistic quantum operations, for instance, universal-NOT or quantum cloning. This feature is confirmed again based on a tighter relationship between F and D in the qubit case. We then consider another realistic noise model where F decreases and D increases due to imperfect control. To alleviate such deterioration, we propose a machine-learning-based algorithm. We demonstrate by means of numerical simulations that the proposed algorithm can stabilize the system. Notably, the recovery process consists solely of the maximization of F, which reduces the control time, thus leading to a faster cure cycle.
When scheduling quantum operations, a shorter overall execution time of the resulting schedule yields a better throughput and higher fidelity output. In this paper, we demonstrate that quantum operation scheduling can be interpreted as a special type of job-shop problem. On this basis, we provide its formulation as Constraint Programming while taking into account commutation between quantum operations. We show that this formulation improves the overall execution time of the resulting schedules in practice through experiments with a real quantum compiler and quantum circuits from two common benchmark sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا