Do you want to publish a course? Click here

The importance of selection rate in the evolution of cooperation

377   0   0.0 ( 0 )
 Publication date 2005
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

How cooperation emerges in human societies is still a puzzle. Evolutionary game theory has been the standard framework to address this issue. In most models, every individual plays with all others, and then reproduce and die according to what they earn. This amounts to assuming that selection takes place at a slow pace with respect to the interaction time scale. We show that, quite generally, if selection speeds up, the evolution outcome changes dramatically. Thus, in games such as Harmony, where cooperation is the only equilibrium and the only rational outcome, rapid selection leads to dominance of defectors. Similar non trivial phenomena arise in other binary games and even in more complicated settings such as the Ultimatum game. We conclude that the rate of selection is a key element to understand and model the emergence of cooperation, and one that has so far been overlooked.



rate research

Read More

Evolutionary game theory is employed to study topological conditions of scale-free networks for the evolution of cooperation. We show that Apollonian Networks (ANs) are perfect scale-free networks, on which cooperation can spread to all individuals, even though there are initially only 3 or 4 hubs occupied by cooperators and all the others by defectors. Local topological features such as degree, clustering coefficient, gradient as well as topology potential are adopted to analyze the advantages of ANs in cooperation enhancement. Furthermore, a degree-skeleton underlying ANs is uncovered for understanding the cooperation diffusion. Constructing this kind degree-skeleton for random scale-free networks promotes cooperation level close to that of Barabasi-Albert networks, which gives deeper insights into the origin of the latter on organization and further promotion of cooperation.
Non-uniform rates of morphological evolution and evolutionary increases in organismal complexity, captured in metaphors like adaptive zones, punctuated equilibrium and blunderbuss patterns, require more elaborate explanations than a simple gradual accumulation of mutations. Here we argue that non-uniform evolutionary increases in phenotypic complexity can be caused by a threshold-like response to growing ecological pressures resulting from evolutionary diversification at a given level of complexity. Acquisition of a new phenotypic feature allows an evolving species to escape this pressure but can typically be expected to carry significant physiological costs. Therefore, the ecological pressure should exceed a certain level to make such an acquisition evolutionarily successful. We present a detailed quantitative description of this process using a microevolutionary competition model as an example. The model exhibits sequential increases in phenotypic complexity driven by diversification at existing levels of complexity and the resulting increase in competitive pressure, which can push an evolving species over the barrier of physiological costs of new phenotypic features.
Cooperative interactions pervade the dynamics of a broad rage of many-body systems, such as ecological communities, the organization of social structures, and economic webs. In this work, we investigate the dynamics of a simple population model that is driven by cooperative and symmetric interactions between two species. We develop a mean-field and a stochastic description for this cooperative two-species reaction scheme. For an isolated population, we determine the probability to reach a state of fixation, where only one species survives, as a function of the initial concentrations of the two species. We also determine the time to reach the fixation state. When each species can migrate into the population and replace a randomly selected individual, the population reaches a steady state. We show that this steady-state distribution undergoes a unimodal to trimodal transition as the migration rate is decreased beyond a critical value. In this low-migration regime, the steady state is not truly steady, but instead fluctuates strongly between near-fixation states of the two species. The characteristic time scale of these fluctuations diverges as $lambda^{-1}$.
Microorganisms live in environments that inevitably fluctuate between mild and harsh conditions. As harsh conditions may cause extinctions, the rate at which fluctuations occur can shape microbial communities and their diversity, but we still lack an intuition on how. Here, we build a mathematical model describing two microbial species living in an environment where substrate supplies randomly switch between abundant and scarce. We then vary the rate of switching as well as different properties of the interacting species, and measure the probability of the weaker species driving the stronger one extinct. We find that this probability increases with the strength of demographic noise under harsh conditions and peaks at either low, high, or intermediate switching rates depending on both species ability to withstand the harsh environment. This complex relationship shows why finding patterns between environmental fluctuations and diversity has historically been difficult. In parameter ranges where the fittest species was most likely to be excluded, however, the beta diversity in larger communities also peaked. In sum, how environmental fluctuations affect interactions between a few species pairs predicts their effect on the beta diversity of the whole community.
198 - Angel Sanchez , Jose A. Cuesta , 2005
Human behavior is one of the main problems for evolution, as it is often the case that human actions are disadvantageous for the self and advantageous for other people. Behind this puzzle are our beliefs about rational behavior, based on game theory. Here we show that by going beyond the standard game-theoretical conventions, apparently altruistic behavior can be understood as self-interested. We discuss in detail an example related to the so called Ultimatum game and illustrate the appearance of altruistic behavior induced by fluctuations. In addition, we claim that in general settings, fluctuations play a very relevant role, and we support this claim by considering a completely different example, namely the Stag-Hunt game.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا