Do you want to publish a course? Click here

Convergence of two-center expansions in positron-hydrogen collisions

57   0   0.0 ( 0 )
 Added by Igor Bray
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

The positron-hydrogen atom scattering system is considered within the S-wave model. Convergence in the elastic scattering, excitation, ionization, and positronium formation channels is studied as a function of the number and type of states used to expand the total wave function. It is found that all unphysical resonances disappear only if near-complete pseudostate expansions are applied to both the atomic and positronium centers.



rate research

Read More

The probabilities of bound-free electron-positron pair creation are calculated for head-on collisions of bare uranium nuclei beyond the monopole approximation. The calculations are based on the numerical solving of the time-dependent Dirac equation in the target reference frame with multipole expansion of the projectile potential. In addition, the energy dependence of the pair-creation cross section is studied in the monopole approximation.
This report summarizes the results of the two-fermion working group of the LEP2-MC workshop, held at CERN from 1999 to 2000. Recent developments in the theoretical calculations of the two fermion production process in the electron-positron collision at LEP2 center of the mass energies are reported. The Bhabha process and the production of muon, tau, neutrino and quark pairs is covered. On the basis of comparison of various calculations, theoretical uncertainties are estimated and compared with those needed for the final LEP2 data analysis. The subjects for the further studies are identified.
A new method for calculations of electron-positron pair-creation probabilities in low-energy heavy-ion collisions is developed. The approach is based on the propagation of all one-electron states via the numerical solving of the time-dependent Dirac equation in the monopole approximation. The electron wave functions are represented as finite sums of basis functions constructed from B-splines using the dual-kinetic-balance technique. The calculations of the created particle numbers and the positron energy spectra are performed for the collisions of bare nuclei at the energies near the Coulomb barrier with the Rutherford trajectory and for different values of the nuclear charge and the impact parameter. To examine the role of the spontaneous pair creation the collisions with a modified velocity and with a time delay are also considered. The obtained results are compared with the previous calculations and the possibility of observation of the spontaneous pair creation is discussed.
277 - A. R. Swann , D. G. Green 2021
Positron cooling via inelastic collisions in CF$_4$ and N$_2$ gases is simulated, including positron-positron interactions. Owing to the molecular symmetries, cooling is assumed to be chiefly due to energy loss via vibrational (rotational) excitations for CF$_4$ (N$_2$). For CF$_4$, it is found that the inclusion of the dipole-inactive $ u_1$ mode, in addition to the dipole-active modes $ u_3$ and $ u_4$, can provide room-temperature thermalization and an accurate cooling timescale. Combination cooling enabled by the $ u_1$ mode, and positron-positron interactions both contribute to the Maxwellianization of the positron momentum distribution. For both gases the evolution of the positron temperature is found to be in excellent agreement with experiment.
Electron-positron pair production in low-energy collisions of heavy nuclei is considered beyond the monopole approximation. The calculation method is based on the numerical solving of the time-dependent Dirac equation with the full two-center potential. Bound-free and free-free pair-production probabilities as well as the energy spectra of the emitted positrons are calculated for the collisions of bare uranium nuclei. The calculations are performed for collision energy near the Coulomb barrier for different values of the impact parameter. The obtained results are compared with the corresponding values calculated in the monopole approximation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا