Complete Numerical Solution of the Temkin-Poet Three-Body Problem


Abstract in English

Although the convergent close-coupling (CCC) method has achieved unprecedented success in obtaining accurate theoretical cross sections for electron-atom scattering, it generally fails to yield converged energy distributions for ionization. Here we report converged energy distributions for ionization of H(1s) by numerically integrating Schroedingers equation subject to correct asymptotic boundary conditions for the Temkin-Poet model collision problem, which neglects angular momentum. Moreover, since the present method is complete, we obtained convergence for all transitions in a single calculation. Complete results, accurate to 1%, are presented for impact energies of 54.4 and 40.8 eV, where CCC results are available for comparison.

Download