Do you want to publish a course? Click here

Reduction of time-resolved space-based CCD photometry developed for MOST Fabry Imaging data

201   0   0.0 ( 0 )
 Added by Piet Reegen
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MOST (Microvariability & Oscillations of STars) satellite obtains ultraprecise photometry from space with high sampling rates and duty cycles. Astronomical photometry or imaging missions in low Earth orbits, like MOST, are especially sensitive to scattered light from Earthshine, and all these missions have a common need to extract target information from voluminous data cubes. They consist of upwards of hundreds of thousands of two-dimensional CCD frames (or sub-rasters) containing from hundreds to millions of pixels each, where the target information, superposed on background and instrumental effects, is contained only in a subset of pixels (Fabry Images, defocussed images, mini-spectra). We describe a novel reduction technique for such data cubes: resolving linear correlations of target and background pixel intensities. This stepwise multiple linear regression removes only those target variations which are also detected in the background. The advantage of regression analysis versus background subtraction is the appropriate scaling, taking into account that the amount of contamination may differ from pixel to pixel. The multivariate solution for all pairs of target/background pixels is minimally invasive of the raw photometry while being very effective in reducing contamination due to, e.g., stray light. The technique is tested and demonstrated with both simulated oscillation signals and real MOST photometry.



rate research

Read More

readPTU is a python package designed to analyze time-correlated single-photon counting data. The use of the library promotes the storage of the complete time arrival information of the photons and full flexibility in post-processing data for analysis. The library supports the computation of time resolved signal with external triggers and second order autocorrelation function analysis can be performed using multiple algorithms that provide the user with different trade-offs with regards to speed and accuracy. Additionally, a thresholding algorithm to perform time post-selection is also available. The library has been designed with performance and extensibility in mind to allow future users to implement support for additional file extensions and algorithms without having to deal with low level details. We demonstrate the performance of readPTU by analyzing the second-order autocorrelation function of the resonance fluorescence from a single quantum dot in a two-dimensional semiconductor.
A stroboscope designed to observe pulsars in the optical spectrum is presented. The absolute phase of the stroboscope is synchronized to better than 2.5 microseconds with the known radio ephemerides for a given pulsar. The absolute timing is provided by the GPS clock. With such a device phase resolved photometry of pulsars can be performed. We demonstrate the instruments capabilities with the results of a set of observations of the Crab pulsar, the brightest of the known optical pulsars, with a visual magnitude of 16.5, and a rotational frequency of ~29Hz.
56 - P. Reegen 2007
Identifying frequencies with low signal-to-noise ratios in time series of stellar photometry and spectroscopy, and measuring their amplitude ratios and peak widths accurately, are critical goals for asteroseismology. These are also challenges for time series with gaps or whose data are not sampled at a constant rate, even with modern Discrete Fourier Transform (DFT) software. Also the False-Alarm Probability introduced by Lomb and Scargle is an approximation which becomes less reliable in time series with longer data gaps. A rigorous statistical treatment of how to determine the significance of a peak in a DFT, called SigSpec, is presented here. SigSpec is based on an analytical solution of the probability that a DFT peak of a given amplitude does not arise from white noise in a non-equally spaced data set. The underlying Probability Density Function (PDF) of the amplitude spectrum generated by white noise can be derived explicitly if both frequency and phase are incorporated into the solution. In this paper, I define and evaluate an unbiased statistical estimator, the spectral significance, which depends on frequency, amplitude, and phase in the DFT, and which takes into account the time-domain sampling. I also compare this estimator to results from other well established techniques and demonstrate the effectiveness of SigSpec with a few examples of ground- and space-based photometric data, illustratring how SigSpec deals with the effects of noise and time-domain sampling in determining significant frequencies.
Analyzing data from paleoclimate archives such as tree rings or lake sediments offers the opportunity of inferring information on past climate variability. Often, such data sets are univariate and a proper reconstruction of the systems higher-dimensional phase space can be crucial for further analyses. In this study, we systematically compare the methods of time delay embedding and differential embedding for phase space reconstruction. Differential embedding relates the systems higher-dimensional coordinates to the derivatives of the measured time series. For implementation, this requires robust and efficient algorithms to estimate derivatives from noisy and possibly non-uniformly sampled data. For this purpose, we consider several approaches: (i) central differences adapted to irregular sampling, (ii) a generalized version of discrete Legendre coordinates and (iii) the concept of Moving Taylor Bayesian Regression. We evaluate the performance of differential and time delay embedding by studying two paradigmatic model systems - the Lorenz and the Rossler system. More precisely, we compare geometric properties of the reconstructed attractors to those of the original attractors by applying recurrence network analysis. Finally, we demonstrate the potential and the limitations of using the different phase space reconstruction methods in combination with windowed recurrence network analysis for inferring information about past climate variability. This is done by analyzing two well-studied paleoclimate data sets from Ecuador and Mexico. We find that studying the robustness of the results when varying the analysis parameters is an unavoidable step in order to make well-grounded statements on climate variability and to judge whether a data set is suitable for this kind of analysis.
Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا