Quantitative measurements of the vibrational eigenmodes in ultra-high-Q silica microspheres are reported. The modes are efficiently excited via radiation-pressure induced dynamical back-action of light confined in the optical whispering-gallery modes of the microspheres (i.e. via the parametric oscillation instability). Two families of modes are studied and their frequency dependence on sphere size investigated. The measured frequencies are in good agreement both with Lambs theory and numerical finite element simulation and are found to be proportional to the spheres inverse diameter.