Do you want to publish a course? Click here

Relativistic Electron Beam Slicing by Wakefiled in Plasmas

168   0   0.0 ( 0 )
 Added by Sergei Bulanov V.
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

A method of slicing of high-energy electron beams following their interaction with the transverse component of the wakefield left in a plasma behind a high intensity ultra short laser pulse is proposed. The transverse component of the wakefield focuses a portion of the electron bunch, which experiences betatron oscillations. The length of the focused part of the electron bunch can be made substantially less than the wakefield wavelength.



rate research

Read More

Laser-plasma technology promises a drastic reduction of the size of high energy electron accelerators. It could make free electron lasers available to a broad scientific community, and push further the limits of electron accelerators for high energy physics. Furthermore the unique femtosecond nature of the source makes it a promising tool for the study of ultra-fast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams, mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens, in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density centroid of the drive bunch can be superluminal or subluminal by utilizing the chromatic dependence of the focusing optics. We first derive the focal velocity and the characteristic length of the focal spot in terms of the focal length and an energy chirp. We then demonstrate using multi-dimensional particle-in-cell simulations that a wake driven by a superluminally propagating flying focus of an electron beam can generate GeV-level electron bunches with ultra-low normalized slice emittance ($sim$30 nm rad), high current ($sim$ 17 kA), low slice energy-spread ($sim$0.1%) and therefore high normalized brightness ($>10^{19}$ A/rad$^2$/m$^2$) in a plasma of density $sim10^{19}$ cm$^{-3}$. The injection process is highly controllable and tunable by changing the focal velocity and shaping the drive beam current. Near-term experiments using the new FACET II beam could potentially produce beams with brightness exceeding $10^{20}$ A/rad$^2$/m$^2$.
84 - K.V. Lotov , V.A. Minakov 2020
Seeded self-modulation in a plasma can transform a long proton beam into a train of micro-bunches that can excite a strong wakefield over long distances, but this needs the plasma to have a certain density profile with a short-scale ramp up. For the parameters of the AWAKE experiment at CERN, we numerically study which density profiles are optimal if the self-modulation is seeded by a short electron bunch. With the optimal profiles, it is possible to freeze the wakefield at approximately half the wavebreaking level. High-energy electron bunches (160 MeV) are less efficient seeds than low-energy ones (18 MeV), because the wakefield of the former lasts longer than necessary for efficient seeding.
In a previous paper we showed that dynamical density shocks occur in the non-relativistic expansion of dense single component plasmas relevant to ultrafast electron microscopy; and we showed that fluid models capture these effects accurately. We show that the non-relativistic decoupling of the relative and center of mass motions ceases to apply and this coupling leads to novel behavior in the relativistic dynamics under planar, cylindrical, and spherical symmetries. In cases where the relative motion of the bunch is relativistic, we show that a dynamical shock emerges even in the case of a uniform bunch with cold initial conditions; and that density shocks are in general enhanced when the relative motion becomes relativistic. Furthermore, we examine the effect of an extraction field on the relativistic dynamics of a planar symmetric bunch.
180 - Brendan B. Godfrey 2014
Particle-in-Cell (PIC) simulation codes have wide applicability to first-principles modeling of multidimensional nonlinear plasma phenomena, including wake-field accelerators. This review addresses both finite difference and pseudo-spectral PIC algorithms, including numerical instability suppression and generalizations of the spectral field solver.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا