Do you want to publish a course? Click here

Observation of X-rays generated by relativistic electrons in waveguide target mounted inside a betatron

103   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we have observed x-ray emission from x-ray waveguide radiator excited by relativistic electrons. The experiment carried out at Tomsk betatron B-35. Such new type stratified target was mounted on goniometer head inside the betatron toroid. The target is consisted of the W-C-W layers placed on Si substrate. The photographs of the angular distributions of the radiation generated in the target by 20-33 MeV electrons have shown the waveguide effect of the three-layer structure on x-rays generated in the target. The effect proved in an angular distribution of radiation as an additional narrow peak of guided x-rays intensity inside a wide cone of usual Bremsstrahlung.



rate research

Read More

65 - G. Stupakov , S. Gessner 2016
We analyze the electromagnetic field of a short relativistic electron beam propagating in a round, hollow dielectric channel. We show that if the beam propagates with an offset relative to the axis of the channel, in a steady state, its electromagnetic field outside of the channel extends to large radii and carries an energy that scales as the Lorentz factor $gamma$ squared (in contrast to the scaling $lngamma$ without the channel). When this energy is converted into a terahertz pulse and focused on a target, the electric field in the focus can greatly exceed typical values of the field that are currently achieved by sending beams through thin metallic foils.
Laser wakefield acceleration of electrons usually offers an axisymmetry around the laser propagation axis. Thus, the accelerating electrons that are focused on axis often execute small transverse oscillations. In this Article, we propose a simple scheme to break this symmetry, which enhances the transverse wiggling of electrons and boosts the betatron radiation emission. Through 3D particle-in-cell simulations, we show that sending the laser with a small angle of incidence on a transverse plasma density gradient generates an asymmetric wakefield. It first provokes injection and then increases the wiggling of the electrons through the transverse shifting of the wakefield axis which occurs when the laser pulse leaves the gradient. Consequently, we show that the radiated energy per unit of charge can increase by a factor $>20$ when using this scheme, and that the critical energy of the radiation quintuples compared with a reference case without the transverse density gradient.
263 - S. Corde , K. Ta Phuoc , R. Fitour 2011
The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London) 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.
111 - A.H. Lumpkin 2018
We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 {mu}m (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphors 80-{mu}m value. Potential fiber-optic plate depth-of-focus aspects and 33-{mu}m diameter carbon fiber imaging are also addressed.
Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle in- cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10-100) MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا