Do you want to publish a course? Click here

Vulnerability of weighted networks

63   0   0.0 ( 0 )
 Added by Alain Barrat
 Publication date 2006
  fields Physics
and research's language is English
 Authors Luca DallAsta




Ask ChatGPT about the research

In real networks complex topological features are often associated with a diversity of interactions as measured by the weights of the links. Moreover, spatial constraints may as well play an important role, resulting in a complex interplay between topology, weight, and geography. In order to study the vulnerability of such networks to intentional attacks, these attributes must be therefore considered along with the topological quantities. In order to tackle this issue, we consider the case of the world-wide airport network, which is a weighted heterogeneous network whose evolution and structure are influenced by traffic and geographical constraints. We first characterize relevant topological and weighted centrality measures and then use these quantities as selection criteria for the removal of vertices. We consider different attack strategies and different measures of the damage achieved in the network. The analysis of weighted properties shows that centrality driven attacks are capable to shatter the networks communication or transport properties even at very low level of damage in the connectivity pattern. The inclusion of weight and traffic therefore provides evidence for the extreme vulnerability of complex networks to any targeted strategy and need to be considered as key features in the finding and development of defensive strategies.



rate research

Read More

We derive a class of generalized statistics, unifying the Bose and Fermi ones, that describe any system where the first-occupation energies or probabilities are different from subsequent ones, as in presence of thresholds, saturation, or aging. The statistics completely describe the structural correlations of weighted networks, which turn out to be stronger than expected and to determine significant topological biases. Our results show that the null behavior of weighted networks is different from what previously believed, and that a systematic redefinition of weighted properties is necessary.
We investigate the effect of a specific edge weighting scheme $sim (k_i k_j)^{beta}$ on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter $beta$ and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter $beta$, we find that network resilience to cascading overloads and network throughput is optimal for the same value of $beta$ over the range of node capacities and available bandwidth.
Maximum entropy null models of networks come in different flavors that depend on the type of constraints under which entropy is maximized. If the constraints are on degree sequences or distributions, we are dealing with configuration models. If the degree sequence is constrained exactly, the corresponding microcanonical ensemble of random graphs with a given degree sequence is the configuration model per se. If the degree sequence is constrained only on average, the corresponding grand-canonical ensemble of random graphs with a given expected degree sequence is the soft configuration model. If the degree sequence is not fixed at all but randomly drawn from a fixed distribution, the corresponding hypercanonical ensemble of random graphs with a given degree distribution is the hypersoft configuration model, a more adequate description of dynamic real-world networks in which degree sequences are never fixed but degree distributions often stay stable. Here, we introduce the hypersoft configuration model of weighted networks. The main contribution is a particular version of the model with power-law degree and strength distributions, and superlinear scaling of strengths with degrees, mimicking the properties of some real-world networks. As a byproduct, we generalize the notions of sparse graphons and their entropy to weighted networks.
Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that may abruptly fragment the system, while below this critical dependency (CD) a failure of few nodes leads only to small damage to the system. So far, the research has been focused on interdependent random networks without space limitations. However, many real systems, such as power grids and the Internet, are not random but are spatially embedded. Here we analytically and numerically analyze the stability of systems consisting of interdependent spatially embedded networks modeled as lattice networks. Surprisingly, we find that in lattice systems, in contrast to non-embedded systems, there is no CD and textit{any} small fraction of interdependent nodes leads to an abrupt collapse. We show that this extreme vulnerability of very weakly coupled lattices is a consequence of the critical exponent describing the percolation transition of a single lattice. Our results are important for understanding the vulnerabilities and for designing robust interdependent spatial embedded networks.
Computer viruses are evolving by developing spreading mechanisms based on the use of multiple vectors of propagation. The use of the social network as an extra vector of attack to penetrate the security measures in IP networks is improving the effectiveness of malware, and have therefore been used by the most aggressive viruses, like Conficker and Stuxnet. In this work we use interdependent networks to model the propagation of these kind of viruses. In particular, we study the propagation of a SIS model on interdependent networks where the state of each node is layer-independent and the dynamics in each network follows either a contact process or a reactive process, with different propagation rates. We apply this study to the case of existing multilayer networks, namely a Spanish scientific community of Statistical Physics, formed by a social network of scientific collaborations and a physical network of connected computers in each institution. We show that the interplay between layers increases dramatically the infectivity of viruses in the long term and their robustness against immunization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا