Do you want to publish a course? Click here

A Precursor of Market Crashes

69   0   0.0 ( 0 )
 Added by Taisei Kaizoji
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we quantitatively investigate the properties of a statistical ensemble of stock prices. We focus attention on the relative price defined as $ X(t) = S(t)/S(0) $, where $ S(0) $ is the initial price. We selected approximately 3200 stocks traded on the Japanese Stock Exchange and formed a statistical ensemble of daily relative prices for each trading day in the 3-year period from January 4, 1999 to December 28, 2001, corresponding to the period in which the {it internet Bubble} formed and {it crashes} in the Japanese stock market. We found that the upper tail of the complementary cumulative distribution function of the ensemble of the relative prices in the high value of the price is well described by a power-law distribution, $ P(S>x) sim x^{-alpha} $, with an exponent that moves over time. Furthermore, we found that as the power-law exponents $ alpha $ approached {it two}, the bubble burst. It is reasonable to assume that when the power-law exponents approached {it two}, it indicates the bubble is about to burst. PACS: 89.65.Gh; Keywords: Market crashes, Power law, Precursor



rate research

Read More

Detailed empirical studies of publicly traded business firms have established that the standard deviation of annual sales growth rates decreases with increasing firm sales as a power law, and that the sales growth distribution is non-Gaussian with slowly decaying tails. To explain these empirical facts, a theory is developed that incorporates both the fluctuations of a single firms sales and the statistical differences among many firms. The theory reproduces both the scaling in the standard deviation and the non-Gaussian distribution of growth rates. Earlier models reproduce the same empirical features by splitting firms into somewhat ambiguous subunits; by decomposing total sales into individual transactions, this ambiguity is removed. The theory yields verifiable predictions and accommodates any form of business organization within a firm. Furthermore, because transactions are fundamental to economic activity at all scales, the theory can be extended to all levels of the economy, from individual products to multinational corporations.
Inter-firm organizations, which play a driving role in the economy of a country, can be represented in the form of a customer-supplier network. Such a network exhibits a heavy-tailed degree distribution, disassortative mixing and a prominent community structure. We analyze a large-scale data set of customer-supplier relationships containing data from one million Japanese firms. Using a directed network framework, we show that the production network exhibits the characteristics listed above. We conduct detailed investigations to characterize the communities in the network. The topology within smaller communities is found to be very close to a tree-like structure but becomes denser as the community size increases. A large fraction (~40%) of firms with relatively small in- or out-degrees have customers or suppliers solely from within their own communities, indicating interactions of a highly local nature. The interaction strengths between communities as measured by the inter-community link weights follow a highly heterogeneous distribution. We further present the statistically significant over-expressions of different prefectures and sectors within different communities.
Understanding cities is central to addressing major global challenges from climate and health to economic resilience. Although increasingly perceived as fundamental socio-economic units, the detailed fabric of urban economic activities is only now accessible to comprehensive analyses with the availability of large datasets. Here, we study abundances of business categories across U.S. metropolitan statistical areas to investigate how diversity of economic activities depends on city size. A universal structure common to all cities is revealed, manifesting self-similarity in internal economic structure as well as aggregated metrics (GDP, patents, crime). A derivation is presented that explains universality and the observed empirical distribution. The model incorporates a generalized preferential attachment process with ceaseless introduction of new business types. Combined with scaling analyses for individual categories, the theory quantitatively predicts how individual business types systematically change rank with city size, thereby providing a quantitative means for estimating their expected abundances as a function of city size. These results shed light on processes of economic differentiation with scale, suggesting a general structure for the growth of national economies as integrated urban systems.
We have recently introduced the ``thermal optimal path (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along which the two time series have the greatest similarity. Here, we generalize the TOP method by introducing a more general definition of distance which takes into account possible regime shifts between positive and negative correlations. This generalization to track possible changes of correlation signs is able to identify possible transitions from one convention (or consensus) to another. Numerical simulations on synthetic time series verify that the new TOP method performs as expected even in the presence of substantial noise. We then apply it to investigate changes of convention in the dependence structure between the historical volatilities of the USA inflation rate and economic growth rate. Several measures show that the new TOP method significantly outperforms standard cross-correlation methods.
173 - T. Gubiec , M. Wilinski 2014
We describe the impact of the intra-day activity pattern on the autocorrelation function estimator. We obtain an exact formula relating estimators of the autocorrelation functions of non-stationary process to its stationary counterpart. Hence, we proved that the day seasonality of inter-transaction times extends the memory of as well the process itself as its absolute value. That is, both processes relaxation to zero is longer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا