No Arabic abstract
Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimers disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40) dimers. We find that (a) all dimer conformations have higher free energies compared to their corresponding monomeric states, and (b) the free energy difference between the Abeta(1-42) and the analogous Abeta(1-40) dimer conformation is not significant. Our results suggest that Abeta oligomerization is not accompanied by the formation of stable planar beta-strand Abeta dimers.
Pathological folding and oligomer formation of the amyloid beta-protein (Abeta) are widely perceived as central to Alzheimers disease (AD). Experimental approaches to study Abeta self-assembly are problematic, because most relevant aggregates are quasi-stable and inhomogeneous. We apply a discrete molecular dynamics (DMD) approach combined with a four-bead protein model to study oligomer formation of the amyloid beta-protein (Abeta). We address the differences between the two most common Abeta alloforms, Abeta40 and Abeta42, which oligomerize differently in vitro. We study how the presence of electrostatic interactions (EIs) between pairs of charged amino acids affects Abeta40 and Abeta42 oligomer formation. Our results indicate that EIs promote formation of larger oligomers in both Abeta40 and Abeta42. The Abeta40 size distribution remains unimodal, whereas the Abeta42 distribution is trimodal, as observed experimentally. Abeta42 folded structure is characterized by a turn in the C-terminus that is not present in Abeta40. We show that the same C-terminal region is also responsible for the strongest intermolecular contacts in Abeta42 pentamers and larger oligomers. Our results suggest that this C-terminal region plays a key role in the formation of Abeta42 oligomers and the relative importance of this region increases in the presence of EIs. These results suggest that inhibitors targeting the C-terminal region of Abeta42 oligomers may be able to prevent oligomer formation or structurally modify the assemblies to reduce their toxicity.
Molecular dynamics simulation is used to study vacancy cluster formation in $beta$- and $alpha$-$Si_3N_4$ with varying vacancy contents (0 - 25.6 at%). Vacancies are randomly created in supercells, which were subsequently heat-treated for 114 nanoseconds. The results show that both $beta$ and $alpha$ can tolerate vacancies up to 12.8 at% and form clusters, confirming previous experimental data indicating 8 at% vacancy in $alpha$-$Si_3N_4$. However, 25.6 at% vacancy in $beta$ results in complete amorphization, while the same amount in $alpha$ results in a transformation of a semi-amorphous $alpha$ phase to a defective $beta$ phase, leading to the removal of the clusters in newly formed $beta$. This clearly explains why cluster vacancies are not experimentally observed in $beta$, considering that $beta$-$Si_3N_4$ ceramics are produced from $alpha$. Furthermore, the lattice parameters of both modifications increase with increasing vacancy content, revealing the cause of different lattice constants that were previously reported for $alpha$-$Si_3N_4$.
Endothelial cells are responsible for the formation of the capillary blood vessel network. We describe a system of endothelial cells by means of two-dimensional molecular dynamics simulations of point-like particles. Cells motion is governed by the gradient of the concentration of a chemical substance that they produce (chemotaxis). The typical time of degradation of the chemical substance introduces a characteristic length in the system. We show that point-like model cells form network resembling structures tuned by this characteristic length, before collapsing altogether. Successively, we improve the non-realistic point-like model cells by introducing an isotropic strong repulsive force between them and a velocity dependent force mimicking the observed peculiarity of endothelial cells to preserve the direction of their motion (persistence). This more realistic model does not show a clear network formation. We ascribe this partial fault in reproducing the experiments to the static geometry of our model cells that, in reality, change their shapes by elongating toward neighboring cells.
Elongation is a fundament process in amyloid fiber growth, which is normally characterized by a linear relationship between the fiber elongation rate and the monomer concentration. However, in high concentration regions, a sub-linear dependence was often observed, which could be explained by a universal saturation mechanism. In this paper, we modeled the saturated elongation process through a Michaelis-Menten like mechanism, which is constituted by two sub-steps -- unspecific association and dissociation of a monomer with the fibril end, and subsequent conformational change of the associated monomer to fit itself to the fibrillar structure. Typical saturation concentrations were found to be $7-70mu M$ for A$beta$40, $alpha$-synuclein and etc. Furthermore, by using a novel Hamiltonian formulation, analytical solutions valid for both weak and strong saturated conditions were constructed and applied to the fibrillation kinetics of $alpha$-synuclein and silk fibroin.
By using molecular dynamics simulation, formation mechanisms of amorphous carbon in particular sp${}^3$ rich structure was researched. The problem that reactive empirical bond order potential cannot represent amorphous carbon properly was cleared in the transition process from graphite to diamond by high pressure and the deposition process of amorphous carbon thin films. Moreover, the new potential model which is based on electron distribution simplified as a point charge was developed by using downfolding method. As a result, the molecular dynamics simulation with the new potential could demonstrate the transition from graphite to diamond at the pressure of 15 GPa corresponding to experiment and the deposition of sp${}^3$ rich amorphous carbon.