Do you want to publish a course? Click here

Laser-induced hydrodynamic instability of fluid interfaces

81   0   0.0 ( 0 )
 Added by Alexis Casner
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid micro-jet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability mechanism is experimentally demonstrated. It simply relies on total reflection of light at the deformed interface whose condition provides the universal scaling relation for the onset Ps of the instability.



rate research

Read More

We report an experimental observation of an instability in gas of constant density (air) with an initial non-uniform seeding of small droplets that develops as a planar shock wave passes through the gas-droplet mix. The seeding non-uniformity is produced by vertical injection of a slow-moving jet of air pre-mixed with glycol droplets into the test section of a shock tube, with the plane of the shock parallel to the axis of the jet. After the shock passage, we observe development of two counter-rotating vortices in the plane normal to that axis. The physical mechanism of the instability we observe is peculiar to multiphase flow, where the shock acceleration causes the second (embedded) phase to move with respect to the embedding medium. With sufficient seeding concentration, this leads to entrainment of the embedding phase that acquires a relative velocity dependent on the initial seeding, resulting in vortex formation in the flow.
Nanoscale hydrodynamic instability of ring-like molten rims around ablative microholes produced in nanometer-thick gold films by tightly focused nanosecond-laser pulses was experimentally explored in terms of laser pulse energy and film thickness. These parametric dependencies of basic instability characteristics - order and period of the resulting nanocrowns - were analyzed, revealing its apparently Rayleigh-Plateau character, as compared to much less consistent possible van der Waals and impact origins. Along with fundamental importance, these findings will put forward pulsed laser ablation as an alternative facile inexpensive table-top approach to study such hydrodynamic instabilities developing at nanosecond temporal and nanometer spatial scales.
139 - O. Kimmoun , H. C. Hsu , B. Kibler 2017
The modulation instability (MI) is a universal mechanism that is responsible for the disintegration of weakly nonlinear narrow-banded wave fields and the emergence of localized extreme events in dispersive media. The instability dynamics is naturally triggered, when unstable energy side-bands located around the main energy peak are excited and then follow an exponential growth law. As a consequence of four wave mixing effect, these primary side-bands generate an infinite number of additional side-bands, forming a triangular side-band cascade. After saturation, it is expected that the system experiences a return to initial conditions followed by a spectral recurrence dynamics. Much complex nonlinear wave field motion is expected, when the secondary or successive side-band pair that are created are also located in the finite instability gain range around the main carrier frequency peak. This latter process is referred to as higher-order MI. We report a numerical and experimental study that confirm observation of higher-order MI dynamics in water waves. Furthermore, we show that the presence of weak dissipation may counter-intuitively enhance wave focusing in the second recurrent cycle of wave amplification. The interdisciplinary weakly nonlinear approach in addressing the evolution of unstable nonlinear waves dynamics may find significant resonance in other nonlinear dispersive media in physics, such as optics, solids, superfluids and plasma.
Attractive colloidal dispersions, suspensions of fine particles which aggregate and frequently form a space spanning elastic gel are ubiquitous materials in society with a wide range of applications. The colloidal networks in these materials can exist in a mode of free settling when the network weight exceeds its compressive yield stress. An equivalent state occurs when the network is held fixed in place and used as a filter through which the suspending fluid is pumped. In either scenario, hydrodynamic instabilities leading to loss of network integrity occur. Experimental observations have shown that the loss of integrity is associated with the formation of eroded channels, so-called streamers, through which the fluid flows rapidly. However, the dynamics of growth and subsequent mechanism of collapse remain poorly understood. Here, a phenomenological model is presented that describes dynamically the radial growth of a streamer due to erosion of the network by rapid fluid back flow. The model exhibits a finite-time blowup -- the onset of catastrophic failure in the gel -- due to activated breaking of the inter-colloid bonds. Brownian dynamics simulations of hydrodynamically interacting and settling colloids in dilute gels are employed to examine the initiation and propagation of this instability, which is in good agreement with the theory. The model dynamics are also shown to accurately replicate measurements of streamer growth in two different experimental systems. The predictive capabilities and future improvements of the model are discussed and a stability-state diagram is presented providing insight into engineering strategies for avoiding settling instabilities in networks meant to have long shelf lives.
Flows forced by a precessional motion can exhibit instabilities of crucial importance, whether they concern the fuel of a flying object or the liquid core of a telluric planet. So far, stability analyses of these flows have focused on the special case of a resonant forcing. Here, we address the instability of the flow inside a precessing cylinder in the general case. We first show that the base flow forced by the cylinder precession is a superposition of a vertical or horizontal shear flow and an infinite sum of forced modes. We then perform a linear stability analysis of this base flow by considering its triadic resonance with two free Kelvin modes. Finally, we derive the amplitude equations of the free Kelvin modes and obtain an expression of the instability threshold and growth rate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا