No Arabic abstract
A focal point for the HEMC99 workshop was the evaluation of straw-man parameter sets for the acceleration and collider rings of muon colliders at center of mass energies of 10 TeV and 100 TeV. These self-consistent parameter sets are presented and discussed. The methods and assumptions used in their generation are described and motivations are given for the specific choices of parameter values. The assessment of the parameter sets during the workshop is then reviewed and the implications for the feasibility of many-TeV muon colliders are evaluated. Finally, a preview is given of plans for iterating on the parameter sets and, more generally, for future feasibility studies on many-TeV muon colliders.
New self-consistent parameter sets are presented and discussed for muon collider rings at center-of-mass energies of 10, 30 and 100 TeV. All three parameter sets attain luminosities of 3 x 10^35 /cm^2/s. The parameter sets benefit from new insights gained at the HEMC99 workshop that considered the feasibility of many-TeV muon colliders.
High-energy lepton colliders with a centre-of-mass energy in the multi-TeV range are currently considered among the most challenging and far-reaching future accelerator projects. Studies performed so far have mostly focused on the reach for new phenomena in lepton-antilepton annihilation channels. In this work we observe that starting from collider energies of a few TeV, electroweak (EW) vector boson fusion/scattering (VBF) at lepton colliders becomes the dominant production mode for all Standard Model processes relevant to studying the EW sector. In many cases we find that this also holds for new physics. We quantify the size and the growth of VBF cross sections with collider energy for a number of SM and new physics processes. By considering luminosity scenarios achievable at a muon collider, we conclude that such a machine would effectively be a high-luminosity weak boson collider, and subsequently offer a wide range of opportunities to precisely measure EW and Higgs coupling as well as to discover new particles.
This document describes the novel techniques used to simulate the common Snowmass 2013 Energy Frontier Standard Model backgrounds for future hadron colliders. The purpose of many Energy Frontier studies is to explore the reach of high luminosity data sets at a variety of high energy colliders. The generation of high statistics samples which accurately model large integrated luminosities for multiple center-of-mass energies and pile-up environments is not possible using an unweighted event generation strategy -- an approach which relies on event weighting was necessary. Even with these improvements in efficiency, extensive computing resources were required. This document describes the specific approach to event generation using Madgraph5 to produce parton-level processes, followed by parton showering and hadronization with Pythia6, and pile-up and detector simulation with Delphes3. The majority of Standard Model processes for pp interactions at $sqrt(s)$ = 14, 33, and 100 TeV with 0, 50, and 140 additional pile-up interactions are publicly available.
There are many extensions of the standard model that predict the existence of electroweakly interacting massive particles (EWIMPs), in particular in the context of the dark matter. In this paper, we provide a way for indirectly studying EWIMPs through the precise study of the pair production processes of charged leptons or that of a charged lepton and a neutrino at future 100 TeV collider experiments. It is revealed that this search method is suitable in particular for Higgsino, providing us the $5sigma$ discovery reach of Higgsino in supersymmetric model with mass up to 850 GeV. We also discuss how accurately one can extract the mass, gauge charge, and spin of EWIMPs in our method.
Our beam-beam parameter study using beam-beam simulations and PWFA (particle-driven plasma acceleration) beam parameters indicates that at 3 TeV, for examined electron beam lengths ${2~mumathrm{m}leqsigma_zleq 10~mumathrm{m}}$, the total luminosity, as well as the sharpness of the luminosity spectrum for a $gammagamma$ collider are independent of the beam length of the electron beams used to scatter the photons, given that the hourglass effect is avoided. The total luminosity can consequently be maximised by minimising the horizontal and vertical beta functions $beta_{x,y}^*$ at the interaction point. Furthermore, we performed background studies in GUINEA-PIG where we considered the smallest currently achievable $beta_{x,y}^*$ combined with PWFA beam parameters. Simulations results show that our proposed parameter set for a 3 TeV PWFA $gammagamma$ collider is able to deliver a total luminosity significantly higher than a $gammagamma$ collider based on CLIC parameters, but gives rise to more background particles.