We study the Boussinesq equation from the point of view of a multiple-time reductive perturbation method. As a consequence of the elimination of the secular producing terms through the use of the Korteweg--de Vries hierarchy, we show that the solitary--wave of the Boussinesq equation is a solitary--wave satisfying simultaneously all equations of the Korteweg--de Vries hierarchy, each one in an appropriate slow time variable.