Do you want to publish a course? Click here

Parity violating target asymmetry in electron - proton scattering

134   0   0.0 ( 0 )
 Added by ul
 Publication date 1998
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the parity-violating (PV) components of the analyzing power in elastic electron-proton scattering and discuss their sensitivity to the strange quark contributions to the proton weak form factors. We point out that the component of the analyzing power along the momentum transfer is independent of the electric weak form factor and thus compares favorably with the PV beam asymmetry for a determination of the strangeness magnetic moment. We also show that the transverse component could be used for constraining the strangeness radius. Finally, we argue that a measurement of both components could give experimental information on the strangeness axial charge.



rate research

Read More

204 - D. Wang , K. Pan , R. Subedi 2014
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
Time reversal invariance violating parity conserving (TVPC) effects are calculated for elastic proton deuteron scattering with proton energies up to $2~$MeV. Distorted Wave Born Approximation is employed to estimate TVPC matrix elements, based on hadronic wave functions, obtained by solving three-body Faddeev-Merkuriev equations in configuration space with realistic potentials.
The parity nonconserving longitudinal analyzing power A_L is calculated in elastic pp scattering at the energies below the approximate inelastic region T_lab = 350 MeV. The short-ranged heavy meson rho and omega exchanges as well as the longer-ranged two pion exchanges are considered as the mediators of the parity nonconserving interactions. The DDH best coupling values are used as the parity nonconserving meson-NN couplings. Also three different parity nonconserving two-pion exchange potentials by various authors are compared.
We report the measurement of the parity-violating asymmetry for the inelastic scattering of electrons from the proton, at $Q^2 = 0.082$ GeV$^2$ and $ W = 2.23$ GeV, above the resonance region. The result $A_{rm Inel} = - 13.5 pm 2.0 ({rm stat}) pm 3.9 ({rm syst})$~ppm agrees with theoretical calculations, and helps to validate the modeling of the $gamma Z$ interference structure functions $F_1^{gamma Z}$ and $F_2^{gamma Z}$ used in those calculations, which are also used for determination of the two-boson exchange box diagram ($Box_{gamma Z}$) contribution to parity-violating elastic scattering measurements. A positive parity-violating asymmetry for inclusive $pi^-$ production was observed, as well as positive beam-normal single-spin asymmetry for scattered electrons and a negative beam-normal single-spin asymmetry for inclusive $pi^-$ production.
88 - J. Carlson 2001
The proton-proton parity-violating longitudinal asymmetry is calculated in the lab-energy range 0--350 MeV, using a number of different, latest-generation strong-interaction potentials--Argonne V18, Bonn-2000, and Nijmegen-I--in combination with a weak-interaction potential consisting of rho- and omega-meson exchanges--the model known as DDH. The complete scattering problem in the presence of parity-conserving, including Coulomb, and parity-violating potentials is solved in both configuration- and momentum-space. The predicted parity-violating asymmetries are found to be only weakly dependent upon the input strong-interaction potential adopted in the calculation. Values for the rho- and omega-meson weak coupling constants $h^{pp}_rho$ and $h^{pp}_omega$ are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا