Do you want to publish a course? Click here

Virtual Compton Scattering off the Nucleon in Chiral Perturbation Theory

120   0   0.0 ( 0 )
 Added by Germar Knoechlein
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinbergs power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.



rate research

Read More

The spin-independent part of the virtual Compton scattering (VCS) amplitude from the nucleon is calculated within the framework of heavy baryon chiral perturbation theory (HBChPT). The calculation is performed to third order in external momenta according to chiral power counting. The relation of the tree-level amplitudes to what is expected from the low-energy theorem is discussed. We relate the one-loop results to the structure coefficients of a low-energy expansion for the model-dependent part of the VCS amplitude recently defined by Fearing and Scherer. Finally we discuss the connection of our results with the generalized polarizabilities of the nucleon defined by Guichon, Liu and Thomas.
308 - X.-L. Ren , E. Epelbaum , 2019
We calculate the lambda-nucleon scattering phase shifts and mixing angles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. Scattering amplitudes are obtained by solving the corresponding coupled-channel integral equations that have a milder ultraviolet behavior compared to their non-relativistic analogs. This allows us to consider the removed cutoff limit in our leading-order calculations also in the $^3P_0$ and $^3P_1$ partial waves. We find that, in the framework we are using, at least some part of the higher-order contributions to the baryon-baryon potential in these channels needs to be treated nonperturbatively and demonstrate how this can be achieved in a way consistent with quantum field theoretical renormalization for the leading contact interactions. We compare our results with the ones of the non-relativistic approach and lattice QCD phase shifts obtained for non-physical pion masses.
169 - A. Metz , D. Drechsel 1996
Virtual Compton scattering off the nucleon has been studied in the one-loop approximation of the linear sigma model. The three generalized polarizabilities of the nucleon have been calculated and compared with the existing theoretical predictions. In particular, we find that only two of the three scalar polarizabilities are independent observables.
211 - E.J.Downie , H.Fonvieille 2011
We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma p) with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deforms under an applied static electromagnetic field. Our knowledge of nucleon polarisabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives.
152 - H.Fonvieille 2019
This review gives an update on virtual Compton scattering (VCS) off the nucleon, $gamma^* N to N gamma$, in the low-energy regime. We recall the theoretical formalism related to the generalized polarizabilities (GPs) and model predictions for these observables. We present the GP extraction methods that are used in the experiments: the approach based on the low-energy theorem for VCS and the formalism of Dispersion Relations. We then review the experimental results, with a focus on the progress brought by recent experimental data on proton generalized polarizabilities, and we conclude by some perspectives in the field of VCS at low energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا