Do you want to publish a course? Click here

Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation

305   0   0.0 ( 0 )
 Added by Akira Ono
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

On the basis of the antisymmetrized molecular dynamics (AMD) of wave packets for the quantum system, a novel model (called AMD-V) is constructed by the stochastic incorporation of the diffusion and the deformation of wave packets which is calculated by Vlasov equation without any restriction on the one-body distribution. In other words, the stochastic branching process in molecular dynamics is formulated so that the instantaneous time evolution of the averaged one-body distribution is essentially equivalent to the solution of Vlasov equation. Furthermore, as usual molecular dynamics, AMD-V keeps the many-body correlation and can naturally describe the fluctuation among many channels of the reaction. It is demonstrated that the newly introduced process of AMD-V has drastic effects in heavy ion collisions of 40Ca + 40Ca at 35 MeV/nucleon, especially on the fragmentation mechanism, and AMD-V reproduces the fragmentation data very well. Discussions are given on the interrelation among the frameworks of AMD, AMD-V and other microscopic models developed for the nuclear dynamics.



rate research

Read More

163 - Y. Chiba , M. Kimura 2018
The cluster states in $^{13}{rm C}$ are investigated by antisymmetrized molecular dynamics. By investigating the spectroscopic factors, the cluster configurations of the excited states are discussed. It is found that the $1/2^+_2$ state is dominantly composed of the $^{12}{rm C}(0^+_2)otimes s_{1/2}$ configuration and can be regarded as a Hoyle analogue state. On the other hand, the p-wave states ($3/2^-$ and $1/2^-$) do not have such structure, because of the coupling with other configurations. The isoscalar monopole and dipole transition strengths from the ground to the excited states are also studied. It is shown that the excited $1/2^-$ states have strong isoscalar monopole transition strengths consistent with the observation. On the other hand, the excited $1/2^+$ states unexpectedly have weak isoscalar dipole transitions except for the $1/2^+_1$ state. It is discussed that the suppression of the dipole transition is attributed to the property of the dipole operator.
Intermediate energy (p,p$$x) reaction is studied with antisymmetrized molecular dynamics (AMD) in the cases of $^{58}$Ni target with $E_p = 120$ MeV and $^{12}$C target with $E_p = $ 200 and 90 MeV. Angular distributions for various $E_{p}$ energies are shown to be reproduced well without any adjustable parameter, which shows the reliability and usefulness of AMD in describing light-ion reactions. Detailed analyses of the calculations are made in the case of $^{58}$Ni target and following results are obtained: Two-step contributions are found to be dominant in some large angle region and to be indispensable for the reproduction of data. Furthermore the reproduction of data in the large angle region $theta agt 120^circ$ for $E_{p}$ = 100 MeV is shown to be due to three-step contributions. Angular distributions for $E_{p} agt$ 40 MeV are found to be insensitive to the choice of different in-medium nucleon-nucleon cross sections $sigma_{NN}$ and the reason of this insensitivity is discussed in detail. On the other hand, the total reaction cross section and the cross section of evaporated protons are found to be sensitive to $sigma_{NN}$. In the course of the analyses of the calculations, comparison is made with the distorted wave approach.
We develop a new formalism to treat nuclear many-body systems using bare nucleon-nucleon interaction. It has become evident that the tensor interaction plays important role in nuclear many-body systems due to the role of the pion in strongly interacting system. We take the antisymmetrized molecular dynamics (AMD) as a basic framework and add a tensor correlation operator acting on the AMD wave function using the concept of the tensor-optimized shell model (TOSM). We demonstrate a systematical and straightforward formulation utilizing the Gaussian integration and differentiation method and the antisymmetrization technique to calculate all the matrix elements of the many-body Hamiltonian. We can include the three-body interaction naturally and calculate the matrix elements systematically in the progressive order of the tensor correlation operator. We call the new formalism tensor-optimized antisymmetrized molecular dynamics.
86 - Takayuki Myo 2017
We propose a new variational method for treating short-range repulsion of bare nuclear force for nuclei in antisymmetrized molecular dynamics (AMD). In AMD, the short-range correlation is described in terms of large imaginary centroids of Gaussian wave packets of nucleon pairs in opposite signs, causing high-momentum components in nucleon pair. We superpose these AMD basis states and name this method high-momentum AMD (HM-AMD), which is capable of describing strong tensor correlation (Prog. Theor. Exp. Phys. (2017) 111D01). In this paper, we extend HM-AMD by including up to two kinds of nucleon pairs in each AMD basis state utilizing the cluster expansion, which produces many-body correlations involving high-momentum components. We investigate how much HM-AMD describes the short-range correlation by showing the results for $^3$H using the Argonne V4$^prime$ central potential. It is found that HM-AMD reproduces the results of few-body calculations and also the tensor-optimized AMD. This means that HM-AMD is a powerful approach to describe the short-range correlation in nuclei. In HM-AMD, momentum directions of nucleon pairs isotropically contribute to the short-range correlation, which is different from the tensor correlation.
69 - C.Z. Shi , Y. G. Ma , X. G. Cao 2020
Direct photon produced from first proton-neutron ($p$-$n$) collision during the early stage of heavy ion reaction is a sensitive probe to reflect energy and momentum distribution of nucleons. In this work, we embedded the hard photon production channel in an extended quantum molecular dynamics (EQMD) model, and took the direct photon as a possible probe to improve namely the Fermi motion in the EQMD model. A possible scheme is offered to handle the dynamical wave packet width within incoherent bremsstrahlung process. Direct photons calculated by our modified EQMD were compared with data of $^{14}$N + $^{12}$C at beam energies $E/A$ = 20, 30 and 40 MeV, and it is found that the yield, inverse slope and angular distribution of direct photons could be reasonably reproduced. In addition, asymmetric reaction systems of $^{4}$He + C and $^{4}$He + Zn at $E/A$ = 53 MeV are also simulated in this work. It is found that the symmetric angular distribution in the nucleon-nucleon ($N$-$N$) center-of-mass (c.m.) frame and the velocity of $ the gamma$-emission source can be reasonably obtained from our method although there is some quantitative differences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا