Do you want to publish a course? Click here

Neutron star matter in an effective model

150   0   0.0 ( 0 )
 Added by Tarun Jha Mr.
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We study the equation of state (EOS) for dense matter in the core of the compact star with hyperons and calculate the star structure in an effective model in the mean field approach. With varying incompressibility and effective nucleon mass, we analyse the resulting EOS with hyperons in beta equilibrium and its underlying effect on the gross properties of the compact star sequences. The results obtained in our analysis are compared with predictions of other theoretical models and observations. The maximum mass of the compact star lies in the range $1.21-1.96 ~M_{odot}$ for the different EOS obtained, in the model.



rate research

Read More

The effect of strange interactions in neutron star matter and the role of the strange meson-hyperon couplings are studied in a relativistic quark model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to $sigma$, $omega$, $rho$, $sigma^*$ and $phi$ mesons through mean-field approximations. The meson-baryon couplings are fixed through the SU(6) spin-flavor symmetry and the SU(3) flavor symmetry to determine the hadronic equation of state (EoS). We find that the SU(3) coupling set gives the potential depth between $Lambda$s around $-5$ MeV and favours a stiffer EoS.The radius for the canonical neutron star lies within a range of $12.7$ to $13.1$ km.
We study the collective density modes which can affect neutron-star thermodynamics in the baryonic density range between nuclear saturation ($rho_0$) and $3rho_0$. In this region, the expected constituents of neutron-star matter are mainly neutrons, protons and electrons ($npe$ matter), under the constraint of beta equilibrium. The elementary excitations of this $npe$ medium are studied in the RPA framework. We emphasize the effect of Coulomb interaction, in particular the electron screening of the proton plasmon mode. For the treatment of the nuclear interaction, we compare two modern Skyrme forces and a microscopic approach. The importance of the nucleon effective mass is observed.
We study the possible collective plasma modes which can affect neutron-star thermodynamics and different elementary processes in the baryonic density range between nuclear saturation ($rho_0$) and $3rho_0$. In this region, the expected constituents of neutron-star matter are mainly neutrons, protons, electrons and muons ($npemu$ matter), under the constraint of beta equilibrium. The elementary plasma excitations of the $pemu$ three-fluid medium are studied in the RPA framework. We emphasize the relevance of the Coulomb interaction among the three species, in particular the interplay of the electron and muon screening in suppressing the possible proton plasma mode, which is converted into a sound-like mode. The Coulomb interaction alone is able to produce a variety of excitation branches and the full spectral function shows a rich structure at different energy. The genuine plasmon mode is pushed at high energy and it contains mainly an electron component with a substantial muon component, which increases with density. The plasmon is undamped for not too large momentum and is expected to be hardly affected by the nuclear interaction. All the other branches, which fall below the plasmon, are damped or over-damped.
81 - J.A. Pons , S. Reddy , P.J. Ellis 2000
We study the equation of state (EOS) of kaon-condensed matter including the effects of temperature and trapped neutrinos. It is found that the order of the phase transition to a kaon-condensed phase, and whether or not Gibbs rules for phase equilibrium can be satisfied in the case of a first order transition, depend sensitively on the choice of the kaon-nucleon interaction. The main effect of finite temperature, for any value of the lepton fraction, is to mute the effects of a first order transition, so that the thermodynamics becomes similar to that of a second order transition. Above a critical temperature, found to be at least 30--60 MeV depending upon the interaction, the first order transition disappears. The phase boundaries in baryon density versus lepton number and baryon density versus temperature planes are delineated. We find that the thermal effects on the maximum gravitational mass of neutron stars are as important as the effects of trapped neutrinos, in contrast to previously studied cases in which the matter contained only nucleons or in which hyperons and/or quark matter were considered. Kaon-condensed EOSs permit the existence of metastable neutron stars, because the maximum mass of an initially hot, lepton-rich protoneutron star is greater than that of a cold, deleptonized neutron star. The large thermal effects imply that a metastable protoneutron stars collapse to a black hole could occur much later than in previously studied cases that allow metastable configurations.
We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which are not present at Hartree level. Because the model is based upon the in-medium modification of the quark structure of the bound hadrons, it can be applied without additional parameters to include hyperons and to calculate the equation of state of dense matter in beta-equilibrium. This leads naturally to a study of the properties of neutron stars, including their maximum mass, their radii and density profiles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا