Do you want to publish a course? Click here

Ab initio calculation of the 4He(e,ed)d reaction

122   0   0.0 ( 0 )
 Added by Winfried Leidemann
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The two-body knock-out reaction 4He(e,ed)d is calculated at various momentum transfers. The full four-nucleon dynamics is taken into account microscopically both in the initial and the final states. As NN interaction the central MT-I/III potential is used. The calculation shows a strong reduction of the coincidence cross section due to the final state interaction. Nonetheless the theoretical results exhibit a considerable overestimation of the experimental cross section at lower momentum transfer. Comparisons with other, less complete, calculations suggest that consideration of a more realistic ground state might not be sufficient for a good agreement with experiment, rather a more realistic final state interaction could play an essential role.

rate research

Read More

340 - T. Duguet , V. Som`a , S. Lecluse 2016
The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab initio self-consistent Greens function calculations of one of such candidates, $^{34}$Si, together with its Z+2 neighbour $^{36}$S. Binding energies, rms radii and density distributions of the two nuclei as well as low-lying spectroscopy of $^{35}$Si, $^{37}$S, $^{33}$Al and $^{35}$P are discussed. The interpretation of one-nucleon removal and addition spectra in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input inter-nucleon interactions. The prediction regarding the (non-)existence of the bubble structure in $^{34}$Si varies significantly with the nuclear Hamiltonian used. However, demanding that the experimental charge density distribution and the root mean square radius of $^{36}$S are well reproduced, along with $^{34}$Si and $^{36}$S binding energies, only leaves the NNLO$_{text{sat}}$ Hamiltonian as a serious candidate to perform this prediction. In this context, a bubble structure, whose fingerprint should be visible in an electron scattering experiment of $^{34}$Si, is predicted. Furthermore, a clear correlation is established between the occurrence of the bubble structure and the weakening of the 1/2$^-$-3/2$^-$ splitting in the spectrum of $^{35}$Si as compared to $^{37}$S.
We report the first observation of the charge symmetry breaking d + d -> 4He + pi0 reaction near threshold at the Indiana University Cyclotron Facility. Kinematic reconstruction permitted the separation of 4He + pi0 events from double radiative capture 4He + gamma + gamma events. We measured total cross sections for neutron pion production of 12.7 +- 2.2 pb at 228.5 MeV and 15.1 +- 3.1 pb at 231.8 MeV. The uncertainty is dominated by statistical errors.
We propose a new Monte Carlo method called the pinhole trace algorithm for {it ab initio} calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first {it ab initio} study of the density and temperature dependence of nuclear clustering.
351 - J. Rotureau , G. Potel , W. Li 2019
A new framework for $A(d,p)B$ reactions is introduced by merging the microscopic approach to computing the properties of the nucleon-target systems and the three-body $n+p+A$ reaction formalism, thus providing a consistent link between the reaction cross sections and the underlying microscopic structure. In this first step toward a full microscopic description, we focus on the inclusion of the neutron-target microscopic properties. The properties of the neutron-target subsystem are encapsulated in the Greens function which is computed with the Coupled Cluster theory using a chiral nucleon-nucleon and three-nucleon interactions. Subsequently, this many-body information is introduced in the few-body Greens Function Transfer approach to $(d,p)$ reactions. Our benchmarks on stable targets $^{40,48}$Ca show an excellent agreement with the data. We then proceed to make specific predictions for $(d,p)$ on neutron rich $^{52,54}$Ca isotopes. These predictions are directly relevant to testing the new magic numbers $N=32,34$ and are expected to be feasible in the first campaign of the projected FRIB facility.
104 - S. Strauch 2007
Polarization transfer in quasi-elastic nucleon knockout is sensitive to the properties of the nucleon in the nuclear medium, including possible modification of the nucleon form factor and/or spinor. In our recently completed experiment E03-104 at Jefferson Lab we measured the proton recoil polarization in the 4He(e,ep)3H reaction at a Q^2 of 0.8 (GeV/c)^2 and 1.3 (GeV/c)^2 with unprecedented precision. These data complement earlier data between 0.4 and 2.6 (GeV/c)^2 from both Mainz and Jefferson Lab. The measured ratio of polarization-transfer coefficients differs from a fully relativistic calculation, favoring either the inclusion of a medium modification of the proton form factors predicted by a quark-meson coupling model or strong charge-exchange final-state interactions. The measured induced polarizations agree well with the fully relativistic calculation and indicate that these strong final-state interactions may not be applicable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا