The isospin splitting of the nucleon mean field is derived from the Brueckner theory extended to asymmetric nuclear matter. The Argonne V18 has been adopted as bare interaction in combination with a microscopic three body force. The isospin splitting of the effective mass is determined from the Brueckner-Hartree-Fock self-energy: It is linear acording to the Lane ansatz and such that $m^*_n > m^*_p$ for neutron-rich matter. The symmetry potential is also determined and a comparison is made with the predictions of the Dirac-Brueckner approach and the phenomenological interactions. The theoretical predictions are also compared with the empirical parametrizations of neutron and proton optical-model potentials based on the experimental nucleon-nucleus scattering and the phenomenological ones adopted in transport-model simulations of heavy-ion collisions. The direct contribution of the rearrangement term due to three-body forces to the single particle potential and symmetry potential is discussed.
Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The mass splitting of $m^{*}_{n}>m^{*}_{p}$ and $m^{*}_{n}<m^{*}_{p}$ in nuclear matter and the different stiffness of symmetry energy are used in the model. The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of $^{112}$Sn+$^{112}$Sn and $^{124}$Sn+$^{124}$Sn at the incident energies of 50 and 120 MeV/nucleon, respectively. It is found that the both effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). Specific constraints are obtained from the double ratio spectra, which are evaluated from the ratios of isospin observables produced in $^{124}$Sn+$^{124}$Sn over $^{112}$Sn+$^{112}$Sn collisions. A mass splitting of $m^{*}_{n}<m^{*}_{p}$ is constrained from the available data at the energy of 120 MeV/nucleon. A soft symmetry energy with the stiffness of $gamma_{s}=$0.5 is close to the experimental double ratio spectra at both energies.
By the use of the latest experimental data on the spectra of $^{133}$Sb and $^{131}$Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.
Nucleon momentum distribution (NMD), particularly its high-momentum components, is essential for understanding the nucleon--nucleon ($ NN $) correlations in nuclei. Herein, we develop the studies of NMD of $^{56}text{Fe}$ from the axially deformed relativistic mean-field (RMF) model. Moreover, we introduce the effects of $ NN $ correlation into the RMF model from phenomenological models based on deuteron and nuclear matter. For the region $ k<k_{text{F}} $, the effects of deformation on the NMD of the RMF model are investigated using the total and single-particle NMDs. For the region $ k>k_{text{F}} $, the high-momentum components of the RMF model are modified by the effects of $ NN $ correlation, which agree with the experimental data. Comparing the NMD of relativistic and non-relativistic mean-field models, the relativistic effects on nuclear structures in momentum space are analyzed. Finally, by analogizing the tensor correlations in deuteron and Jastrow-type correlations in nuclear matter, the behaviors and contributions of $ NN $ correlations in $^{56}text{Fe}$ are further analyzed, which helps clarify the effects of the tensor force on the NMD of heavy nuclei.
We report quantum Monte Carlo calculations of single-$Lambda$ hypernuclei for $A<50$ based on phenomenological two- and three-body hyperon-nucleon forces. We present results for the $Lambda$ separation energy in different hyperon orbits, showing that the accuracy of theoretical predictions exceeds that of currently available experimental data, especially for medium-mass hypernuclei. We show the results of a sensitivity study that indicates the possibility to investigate the nucleon-isospin dependence of the three-body hyperon-nucleon-nucleon force in the medium-mass region of the hypernuclear chart, where new spectroscopy studies are currently planned. The importance of such a dependence for the description of the physics of hypernuclei, and the consequences for the prediction of neutron star properties are discussed.
We discuss the role of the three-nucleon isospin T=3/2 amplitude in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential and is driven by the difference between neutron-neutron (proton-proton) and neutron-proton forces. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the locally regularized chiral N4LO nucleon-nucleon potential supplemented by the chiral N2LO three-nucleon force. For comparison we employ also the Av18 nucleon-nucleon potential combined with the Urbana IX three-nucleon force. We find that the isospin T=3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S0 state with isospin T=3/2. For neutron-deuteron elastic scattering the T=3/2 contributions are insignificant and charge-independence breaking can be accounted for by using the effective t-matrix generated with the so-called 2/3-1/3 rule.