Do you want to publish a course? Click here

On isospin-breaking corrections to the energy level displacement of the ground state of kaonic hydrogen

55   0   0.0 ( 0 )
 Added by A. N. Ivanov
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

In the model of low-energy bar-K N interactions near threshold (EPJA 21, 11 (2004); 25, 79 (2005)) we calculate isospin-breaking corrections to the energy level displacement of the ground state of kaonic hydrogen, investigated by Meissner, Raha and Rusetsky (EPJC 35, 349 (2004)) within the non-relativistic effective Lagrangian approach based on ChPT by Gasser and Leutwyler. Our results agree well with those by Meiss ner et al.. In addition we calculate the dispersive corrections, caused by the transition K^-p -> bar-K^0n ->K^-p with the bar-K^0n pair on-mass shell. We show also how hypothesis on the dominant role of the bar-K^0n-cusp for the S-wave amplitude of low-energy K^-p scattering near threshold, used by Meissner et al., can be realized in our approach. The result agrees fully with that by Meissner et al..

rate research

Read More

We compute the energy level displacement of the excited np states of kaonic hydrogen within the quantum field theoretic and relativistic covariant model of strong low-energy bar-KN interactions suggested in EPJA21, 11 (2004). For the width of the energy level of the excited 2p state of kaonic hydrogen, caused by strong low-energy interactions, we find Gamma_2p = 2 meV. This result is important for the theoretical analysis of the X-ray yields in kaonic hydrogen.
We argue that due to isospin and U-spin invariance of strong low-energy interactions the S-wave scattering lengths a^0_0 and a^1_0 of bar-KN scattering with isospin I=0 and I = 1 satisfy the low-energy theorem a^0_0 + 3 a^1_0 = 0 valid to leading order in chiral expansion. In the model of strong low-energy bar-KN interactions at threshold (EPJA 21,11 (2004)) we revisit the contribution of the Sigma(1750) resonance, which does not saturate the low-energy theorem a^0_0 + 3 a^1_0 = 0, and replace it by the baryon background with properties of an SU(3) octet. We calculate the S-wave scattering amplitudes of K^-N and K^-d scattering at threshold. We calculate the energy level displacements of the ground states of kaonic hydrogen and kaonic deuterium. The result obtained for kaonic hydrogen agrees well with recent experimental data by the DEAR Collaboration. We analyse the cross sections for elastic and inelastic K^-p scattering for laboratory momenta of the incident K^- meson from the domain 70 MeV/c < p_K < 150 MeV/c. The theoretical results agree with the available experimental data within two standard deviations.
We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismatch in the radial wave functions of the parent and daughter states. We determine which core orbitals are important to include from an examination of measured spectroscopic factors in single-nucleon pick-up reactions. We also examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show that it is possible to preserve the conventional separation into a nucleus-independent inner radiative term and a nucleus-dependent outer term. We tabulate new values for the three theoretical corrections for twenty superallowed transitions, including the thirteen well-studied cases. With these new correction terms the corrected Ft values for the thirteen cases are statistically consistent with one another and the anomalousness of the 46V result disappears. These new calculations lead to a lower average Ft value and a higher value of Vud. The sum of squares of the top-row elements of the CKM matrix now agrees exactly with unitarity.
We calculate the continuum- and bound-state l^- decay rates of pionic and kaonic hydrogen in the ground state, where l^- is either the electron or the muon.
We present a study of the isospin-breaking (IB) corrections to pseudoscalar (PS) meson masses using the gauge configurations produced by the ETM Collaboration with $N_f=2+1+1$ dynamical quarks at three lattice spacings varying from 0.089 to 0.062 fm. Our method is based on a combined expansion of the path integral in powers of the small parameters $(widehat{m}_d - widehat{m}_u)/Lambda_{QCD}$ and $alpha_{em}$, where $widehat{m}_f$ is the renormalized quark mass and $alpha_{em}$ the renormalized fine structure constant. We obtain results for the pion, kaon and $D$-meson mass splitting; for the Dashens theorem violation parameters $epsilon_gamma(overline{mathrm{MS}}, 2~mbox{GeV})$, $epsilon_{pi^0}$, $epsilon_{K^0}(overline{mathrm{MS}}, 2~mbox{GeV})$; for the light quark masses $(widehat{m}_d - widehat{m}_u)(overline{mathrm{MS}}, 2~mbox{GeV})$, $(widehat{m}_u / widehat{m}_d)(overline{mathrm{MS}}, 2~mbox{GeV})$; for the flavour symmetry breaking parameters $R(overline{mathrm{MS}}, 2~mbox{GeV})$ and $Q(overline{mathrm{MS}}, 2~mbox{GeV})$ and for the strong IB effects on the kaon decay constants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا