Do you want to publish a course? Click here

Skyrme forces with extended density dependence

102   0   0.0 ( 0 )
 Added by Karim Bennaceur
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

A generalized parameterization of the Skyrme effective force is discussed. Preliminary results are presented for infinite symmetric and asymmetric nuclear matter. In particular, it is shown that an enlarged density dependence based on two terms allows to choose independently the incompressibility and the isoscalar effective mass.



rate research

Read More

62 - Z.W. Zuo , J.C. Pei , X.Y. Xiong 2017
The density dependent term in Skyrme forces is essential, which simulates three-body and many-body correlations beyond the low-momentum two-body interaction. We speculate that a single density term may be insufficient and a higher-order density dependent term is added. The present work investigates the influences of higher-order density dependencies based on extended UNEDF0 and SkM* forces. The global descriptions of nuclear masses and charge radii have been presented. Consequently the extended UNEDF0 force gives a global rms error on binding energies of 1.29 MeV. The influences on fission barriers and equation of state have also been investigated. The perspectives to improve Skyrme forces have also been discussed, including global center-of-mass corrections and Lipkin-Nogami pairing corrections.
Generalized density dependence in Skyrme effective interactions is investigated to get forces valid beyond the mean field approximation. Preliminary results are presented for infinite symmetric and asymmetric nuclear matter up to pure neutron matter.
Time-odd densities and their effect on electric giant resonances are investigated within the self-consistent separable random-phase-approximation (SRPA) model for various Skyrme forces (SkT6, SkO, SkM*, SIII, SGII, SLy4, SLy6, SkI3). Time-odd densities restore Galilean invariance of the Skyrme functional, violated by the effective-mass and spin-orbital terms. In even-even nuclei these densities do not contribute to the ground state but can affect the dynamics. As a particular case, we explore the role of the current density in description of isovector E1 and isoscalar E2 giant resonances in a chain of Nd spherical and deformed isotopes with A=134-158. Relation of the current to the effective masses and relevant parameters of the Skyrme functional is analyzed. It is shown that current contribution to E1 and E2 resonances is generally essential and fully determined by the values and signs of the isovector and isoscalar effective-mass parameters of the force. The contribution is the same for all the isotope chain, i.e. for both standard and exotic nuclei.
In the present work we take the non relativistic limit of relativistic models and compare the obtained functionals with the usual Skyrme parametrization. Relativistic models with both constant couplings and with density dependent couplings are considered. While some models present very good results already at the lowest order in the density, models with non-linear terms only reproduce the energy functional if higher order terms are taken into account in the expansion.
The effective Skyrme energy density functionals are widely used in the study of nuclear structure, nuclear reaction and neutron star, but they are less established from the heavy ion collision data. In this work, we find 22 effective Skyrme parameter sets, when incorporated in use the transport model, ImQMD, to describe the heavy ion collision data, such as isospin diffusion data at 35 MeV/u and 50 MeV/u. We use these sets to calculate the neutron skin of $^{208}$Pb based on the restricted density variation method, and obtain the neutron skin of $^{208}$Pb in the range of $delta R_{np}=0.18pm0.04$ fm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا