Do you want to publish a course? Click here

On the polarization effects in (p,n) reactions between the A=48 isobarical states

343   0   0.0 ( 0 )
 Added by Vadim Isakov
 Publication date 2002
  fields
and research's language is English
 Authors V. I. Isakov




Ask ChatGPT about the research

Isotopical dependence of spin-orbit splitting discovered by us in spectra of heavy nuclei close to doubly magic ones is checked in polarization effects arising in charge exchange (p,n) reaction between the A=48 isobarical states.



rate research

Read More

With the increasing interest in using (d,p) transfer reactions to extract structure and astrophysical information, it is important to evaluate the accuracy of common approximations in reaction theory. Starting from the zero-range adiabatic wave model, which takes into account deuteron breakup in the transfer process, we evaluate the importance of the finite range of the n-p interaction in calculating the adiabatic deuteron wave (as in Johnson and Tandy) as well as in evaluating the transfer amplitude. Our study covers a wide variety of targets, as well as a large range of beam energies. Whereas at low beam energies finite-range effects are small (below 10%), we find these effects to become important at intermediate energies (20 MeV/u) calling for an exact treatment of finite range in the analysis of (d,p) reactions measured at fragmentation facilities.
Polarization properties of strange baryons produced in pp reactions, p + p -> p + Lambda^0 + K^+ and p + p -> p + Sigma^0 + K^$, near thresholds of the final states (p Lambda^0 K^+) and (p Sigma^0 K^+) are analysed relative to polarizations of colliding protons. The cross sections for pp reactions are calculated within the effective Lagrangian approach accounting for strong pp rescattering in the initial state of colliding protons with a dominant contribution of the one-pion exchange and strong final-state interaction of daughter hadrons (Eur. Phys. J. A 9, 425 (2000)).
We propose to use proton knockout reactions (p,2p) from a deeply bound orbit as a new probe into three-nucleon-force (3NF) effects. The remarkable advantage of using (p,2p) reaction is that we can choose an appropriate kinematical condition to probe the 3NF effects. We analyze (p,2p) reactions on a 40Ca target within the framework of distorted-wave impulse approximation with a g-matrix interaction based on chiral two- and three-nucleon forces. The chiral 3NF effects significantly change the peak height of the triple differential cross section of (p,2p) reaction. We also clarify the correspondence between the (p,2p) cross sections and the in- medium pp cross sections.
We point out that after presenting our results on high $n$-$p$ momentum sensitivity of the $(d,p)$ cross sections in [Phys. Rev. Lett. 117 162502 (2016)] the last paragraph of our Letter refers to a need of going beyond the leading order of Weinberg state treatment. This task could be achieved by using any method that can provide exact solution of the three-body problem. Deltuva [arXiv:1806.00298] uses Faddeev equations to study the NN-model dependence of the $(d,p)$ cross sections. His results are consistent with a new study performed at Surrey which is undergoing a reviewing process at Physical Review C. Both studies discuss the $n$-$p$ sensitivity within three-body $n+p+A$ models with $NN$-independent $N$-$A$ optical potentials. The sensitivity may reappear in many-body treatment of $(d,p)$ reactions, for example, due to the threshold position dependence.
The cross sections for the reactions pp -> p Lambda^0K^+ and pn -> n Lambda^0K^+ are calculated near threshold of the final states. The theoretical ratio of the cross sections R = sigma(pn -> n Lambda^0K^+)/ sigma(pp ->pLambda^0K^+) = 3 shows the enhancement of the pn interaction with respect to the pp interaction near threshold of the strangeness production N Lambda^0K^+. Such an enhancement is caused by the contribution of the np interaction in the isospin-singlet state, which is stronger than the $pn$ interaction in the isospin-triplet state. For the confirmation of this result we calculate the cross sections for the reactions pp -> pp pi^0, pi^0 p -> Lambda^0 K^+ and pi^-p -> Lambda^0 K^0 near threshold of the final states. The theoretical cross sections agree well with the experimental data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا