We compare a relativistic covariant model for proton-proton bremsstrahlung with high-quality data from KVI. The agreement in large parts of phase space is satisfactory. However, remarkably large discrepancies are observed for specific kinematic regions. These failures are shown to occur primarily when the final two-nucleon system has energies less than about 15 MeV.
The neutron-proton bremsstrahlung process $(np to npgamma)$ is known to be sensitive to meson exchange currents in the nucleon-nucleon interaction. The triply differential cross section for this reaction has been measured for the first time at the Los Alamos Neutron Science Center, using an intense, pulsed beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered neutrons were observed at six angles between 12$^circ$ and 32$^circ$, and the recoil protons were observed in coincidence at 12$^circ$, 20$^circ$, and 28$^circ$ on the opposite side of the beam. Measurement of the neutron and proton energies at known angles allows full kinematic reconstruction of each event. The data are compared with predictions of two theoretical calculations, based on relativistic soft-photon and non-relativistic potential models.
We present a systematic calculation of the cross section for the lepton-proton bremsstrahlung process l + p --> l + p + gamma in chiral perturbation theory at next-to-leading order. This process corresponds to an undetected background signal for the proposed MUSE experiment at PSI. MUSE is designed to measure elastic scattering of low-energy electrons and muons off a proton target in order to extract a precise value of the protons r.m.s. radius. We show that the commonly used peaking approximation, which is used to evaluate the radiative tail for the elastic cross section, is not applicable for muon-proton scattering at the low-energy MUSE kinematics. Furthermore, we point out a certain pathology with the standard chiral power counting scheme associated with electron scattering, whereby the next-to-next-to-leading order contribution from the pion loop diagrams is kinematically enhanced and numerically of the same magnitude as the next-to-leading order corrections. We correct a misprint in a commonly cited review article.
A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatte formalism and its variation in the Dalitz plot is analyzed.
In 1993 the Nijmegen group published the results of energy-dependent partial-wave analyses (PWAs) of the nucleon-nucleon (NN) scattering data for laboratory kinetic energies below Tlab=350 MeV (PWA93). In this talk some general aspects, but also the newest developments on the Nijmegen NN PWAs are reported. We have almost finished a new energy-dependent PWA and will discuss some typical aspects of this new PWA; where it differs from PWA93, but also what future developments might be, or should be.
We investigate an idea, how to use analysis of the bremsstrahlung photons to study the internal structure of proton under nuclear reaction with nucleus. A new model is constructed to describe bremsstrahlung emission of photons which accompanies the scattering of protons off nuclei. Our bremsstrahlung formalism uses many-nucleon basis that allows to analyze coherent and incoherent bremsstrahlung emissions. As scattered proton can be under the influence of strong forces and produces the largest bremsstrahlung contribution to full spectrum, we focus on accurate determination of its quantum evolution concerning nucleus basing on quantum mechanics and scattering theory. For such a motivation, we at first time generalize Pauli equation with interacting potential describing evolution of fermion inside strong field, with including the electromagnetic form-factors of nucleon basing on DIS theory. Anomalous magnetic momenta of nucleons reinforce our motivation to develop such a formalism, starting from low energy. The full bremsstrahlung spectrum in our model (after renormalization) is dependent on form-factors of the scattered proton. For calculations, we choose the scattering of $p + ^{197}{rm Au}$ at proton beam energy of 190~MeV, where experimental bremsstrahlung data were obtained with high accuracy. We show that the full bremsstrahlung spectrum is sensitive to the form-factors of the scattered proton. In the limit without such form-factors, we reconstruct our previous result (where internal structure of the scattered proton was not studied).
M.D. Cozma
,G.H. Martinus
,O. Scholten
.
(2001)
.
"Covariant model for proton-proton bremsstrahlung: Comparison with high-precision data"
.
R. G. E. Timmermans
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا