The role of the entrance channel in fusion-fission reactions was studied by the theoretical analysis of the experimental evaporation residue excitation functions for reactions leading to the same compound nucleus. The evaporation residues cross sections for xn-channels were calculated in the frame of the combined dinuclear system concept and advanced statistical model. The revealed differences between experimental data on the evaporation residues in the ^{40}Ar+^{176}Hf, ^{86}Kr + ^{130}Xe and ^{124}Sn + ^{92}Zr reactions leading to the ^{216}Th^* compound nucleus are explained by the different spin distributions of compound nuclei which are formed. It is shown that the intrinsic fusion barrier B^*_{fus} and size of potential well are different for every entrance channel.