No Arabic abstract
The su(2)-algebraic model interacting with an environment is investigated from a viewpoint of treating the dissipative system. By using the time-dependent variational approach with a coherent state and with the help of the canonicity condition, the time-evolution of this quantum many-body system is described in terms of the canonical equations of motion in the classical mechanics. Then, it is shown that the su(1,1)-algebra plays an essential role to deal with this model. An exact solution with appropriate initial conditions is obtained by means of Jacobis elliptic function. The implication to the dissipative process is discussed.
The use of squeezing and entanglement allows advanced interferometers to detect signals that would otherwise be buried in quantum mechanical noise. High sensitivity instruments including magnetometers and gravitational wave detectors have shown enhanced signal-to-noise ratio (SNR) by injecting single-mode squeezed light into SU(2) interferometers, e.g. the Mach-Zehnder or Michelson topologies. The quantum enhancement in this approach is sensitive to losses, which break the fragile quantum correlations in the squeezed state. In contrast, SU(1,1) interferometers achieve quantum enhancement by noiseless amplification; they noiselessly increase the signal rather than reducing the quantum noise. Prior work on SU(1,1) interferometers has shown quantum-enhanced SNR11 and insensitivity to losses but to date has been limited to low powers and thus low SNR. Here we introduce a new interferometer topology, the SU(2)-in-SU(1,1) nested interferometer, that combines quantum enhancement, the high SNR possible with a SU(2) interferometer, and the loss tolerance of the SU(1,1) approach. We implement this interferometer using four-wave mixing in a hot atomic vapor and demonstrate 2:2(5) dB of quantum SNR enhancement, in a system with a phase variance nearly two orders of magnitude below that of any previous loss-tolerant enhancement scheme. The new interferometer enables new possibilities such as beyond-shot-noise sensing with wavelengths for which efficient detectors are not available.
With the use of two kinds of boson operators, a new boson representation of the su(2)-algebra is proposed. The basic idea comes from the pseudo su(1,1)-algebra recently given by the present authors. It forms a striking contrast to the Schwinger boson representation of the su(2)-algebra which is also based on two kinds of bosons. This representation may be suitable for describing time-dependence of the system interacting with the external environment in the framework of the thermo field dynamics formalism, i.e., the phase space doubling. Further, several deformations related to the su(2)-algebra in this boson representation are discussed. On the basis of these deformed algebra, various types of time-evolution of a simple boson system are investigated.
We study dense nuclear matter and the chiral phase transition in a SU(2) parity doublet model at zero temperature. The model is defined by adding the chiral partner of the nucleon, the N, to the linear sigma model, treating the mass of the N as an unknown free parameter. The parity doublet model gives a reasonable description of the properties of cold nuclear matter, and avoids unphysical behaviour present in the standard SU(2) linear sigma model. If the N is identified as the N(1535), the parity doublet model shows a first order phase transition to a chirally restored phase at large densities, $rho approx 10 rho_0$, defining the transition by the degeneracy of the masses of the nucleon and the N. If the mass of the N is chosen to be 1.2 GeV, then the critical density of the chiral phase transition is lowered to three times normal nuclear matter density, and for physical values of the pion mass, the first order transition turns into a smooth crossover.
New boson representation of the su(2)-algebra proposed by the present authors for describing the damped and amplified oscillator is examined in the Lipkin model as one of simple many-fermion models. This boson representation is expressed in terms of two kinds of bosons with a certain positive parameter. In order to describe the case of any fermion number, third boson is introduced. Through this examination, it is concluded that this representation is well workable for the boson realization of the Lipkin model in any fermion number.
Within the framework of the NJL model, we investigate the modification of the pion damping width in a hot pion gas for temperatures ranging from 0 to 180 MeV. The pion is found to broaden noticeably at T > 60 MeV. Near the chiral phase transition T ~ 180 MeV, the pion width is saturated and amounts to 70 MeV. The main contribution to the width comes from pion-pion collisions. Other contributions are found negligibly small.