Generator coordinate method calculations of one-nucleon removal reactions on $^{40}$Ca


Abstract in English

An approach to the Generator Coordinate Method (GCM) using Skyrme-type effective forces and Woods-Saxon construction potential is applied to calculate the single-particle proton and neutron overlap functions in $^{40}$Ca. The relationship between the bound-state overlap functions and the one-body density matrix has been used. These overlap functions are applied to calculate the cross sections of one-nucleon removal reactions such as ($e,ep$), ($gamma,p$) and ($p,d$) on $^{40}$Ca on the same theoretical footing. A consistent description of data for the different reactions is achieved. The shapes of the experimental cross sections for transitions to the $3/2^{+}$ ground state and the first $1/2^{+}$ excited state of the residual nuclei are well reproduced by the overlap functions obtained within the GCM. An additional spectroscopic factor accounting for correlations not included in the overlap function must be applied to the calculated results to reproduce the size of the experimental cross sections.

Download