Do you want to publish a course? Click here

Alpha - 5He decaying states and the ground state rotational band of 9Be

64   0   0.0 ( 0 )
 Added by The Soya
 Publication date 1998
  fields
and research's language is English
 Authors N. Soic




Ask ChatGPT about the research

In a measurement of the 9Be(7Li,alpha 7Li)n alpha reaction at E = 52 MeV it is unambigously established for the first time that the 9Be excited states around 6.5 and 11.3 MeV decay into the alpha + 5He channel. This fact may support previous claims that the 11.3 MeV state is also a member of the ground state rotational band.



rate research

Read More

In this Letter, we report on alpha particle emission through the nuclear break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that, similarly to nucleons, alpha particles can be emitted to the continuum with very specific angular distribution during the reaction. The alpha particle properties can be understood as resulting from an alpha cluster in the daughter nucleus that is perturbed by the short range nuclear attraction of the collision partner and emitted. A time-dependent theory that describe the alpha particle wave-function evolution is able to reproduce qualitatively the observed angular distribution. This mechanism offers new possibilities to study alpha particle properties in the nuclear medium.
The extremely neutron-rich system $^{6}$H was studied in the direct $^2text{H}(^8text{He},{^4text{He}})^{6}$H transfer reaction with a 26 $A$ MeV secondary $^{8}$He beam. The measured missing mass spectrum shows a broad bump at $sim 4-8$ MeV energy relative to the $^3$H+$3n$ decay threshold. This bump can be interpreted as a broad resonant state in $^{6}$H at $6.8(5)$ MeV. The population cross section of such a presumably $p$-wave state (or may be few overlapping states) in the energy range from 4 to 8 MeV is $dsigma/dOmega_{text{c.m.}} simeq 190(40)$ $mu$b/sr in the angular range $5^{circ}<theta_{text{c.m.}}<16^{circ}$. The obtained missing mass spectrum is practically free of the $^{6}$H events below 3.5 MeV ($dsigma/dOmega_{text{c.m.}} lesssim 5$ $mu$b/sr in the same angular range). The steep rise of the $^{6}$H missing mass spectrum at $sim 3$ MeV allows to derive the lower limit for the possible resonant state energy in $^{6}$H of $4.5(3)$ MeV. According to the paring energy estimates, such a $4.5(3)$ MeV resonance is a realistic candidate for the $^{6}$H ground state (g.s.). The obtained results confirm that the decay mechanism of the $^{7}$H g.s. (located at 2.2 MeV above the $^{3}$H+$4n$ threshold) is the true (or simultaneous) $4n$ emission. The resonance energy profiles and the momentum distributions of fragments of the sequential $^{6}$H$ ,rightarrow , ^5$H(g.s.)+$n, rightarrow , ^3$H+$3n$ decay were analyzed by the theoretically-updated direct four-body-decay and sequential-emission mechanisms. The measured momentum distributions of the $^{3}$H fragments in the $^{6}$H rest frame indicate very strong dineutron-type correlations in the $^{5}$H ground state decay.
139 - V.D. Efros 2013
Properties of the first excited state of the nucleus 9Be are discussed based on recent (e,e) and (gamma,n) experiments. The parameters of an R-matrix analysis of different data sets are consistent with a resonance rather than a virtual state predicted by some model calculations. The energy and the width of the resonance are deduced. Their values are rather similar for all data sets, and the energy proves to be negative. It is argued that the disagreement between the extracted B(E1) values may stem from different ways of integration of the resonance. If corrected, fair agreement between the (e,e) and one of the (gamma,n) data sets is found. A recent (gamma,n) experiment at the HIgS facility exhibits larger cross sections close to the neutron threshold which remain to be explained.
93 - N. Soic , M.Freer , L. Donadille 2003
A study of the 7Li(9Be,4He9Be)3H reaction at E{beam}=70 MeV has been performed using resonant particle spectroscopy techniques and provides a measurement of alpha-decaying states in 13C. Excited states are observed at 12.0, 13.4, 14.1, 14.6, 15.2, 16.8, 17.9, 18.7, 21.3 and 23.9 MeV. This study provides the first measurement of the three highest energy states. Angular distribution measurements have been performed and have been employed to indicate the transferred angular momentum for the populated states. These data are compared with recent speculations of the presence of chain-like structures in 13C.
The hyperfine coupling constants of neutron deficient $^{37}$Ca were deduced from the atomic hyperfine spectrum of the $4s~^2S_{1/2}$ $leftrightarrow$ $4p~^2P_{3/2}$ transition in Ca II, measured using the collinear laser spectroscopy technique. The ground-state magnetic-dipole and spectroscopic electric-quadrupole moments were determined for the first time as $mu = +0.7453(72) mu_N$ and $Q = -15(11)$ $e^2$fm$^2$, respectively. The experimental values agree well with nuclear shell model calculations using the universal sd model-space Hamiltonia
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا