Pion-nucleus elastic scattering at energies above the Delta(1232) resonance is studied using both pi+ and pi- beams on 12C, 40Ca, 90Zr, and 208Pb. The present data provide an opportunity to study the interaction of pions with nuclei at energies where second-order corrections to impulse approximation calculations should be small. The results are compared with other data sets at similar energies, and with four different first-order impulse approximation calculations. Significant disagreement exists between the calculations and the data from this experiment.
Quasi-elastic scattering of 6He at E_lab=27 MeV from 197Au has been measured in the angular range of 6-72 degrees in the laboratory system employing LEDA and LAMP detection systems. These data, along with previously analysed data of 6He + 208Pb at the same energy, are analyzed using Optical Model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in 6He induced reactions.
Background: Double charge exchange (DCE) nuclear reactions have recently attracted much interest as tools to provide experimentally driven information about nuclear matrix elements of interest in the context of neutrinoless double-beta decay. In this framework, a good description of the reaction mechanism and a complete knowledge of the initial and final-state interactions are mandatory. Presently, not enough is known about the details of the optical potentials and nuclear response to isospin operators for many of the projectile-target systems proposed for future DCE studies. Among these, the 20Ne + 76Ge DCE reaction is particularly relevant due to its connection with 76Ge double-beta decay. Purpose: We intend to characterize the initial-state interaction for the 20Ne + 76Ge reactions at 306 MeV bombarding energy and determine the optical potential and the role of the couplings between elastic channel and inelastic transitions to the first low-lying excited states. Methods: We determine the experimental elastic and inelastic scattering cross-section angular distributions, compare the theoretical predictions by adopting different models of optical potentials with the experimental data, and evaluate the coupling effect through the comparison of the distorted-wave Born approximation calculations with the coupled channels ones. Results: Optical models fail to describe the elastic angular distribution above the grazing angle (9.4{deg}). A correction in the geometry to effectively account for deformation of the involved nuclear systems improves the agreement up to about 14{deg}. Coupled channels effects are crucial to obtain good agreement at large angles in the elastic scattering cross section.
The deuteron single and double spin-flip probabilities, S1 and S2, have been measured for the 12C(pol{d},pol{d}) reaction at Ed = 270 MeV for an excitation energy range between 4 and 24 MeV and a scattering angular range between Theta_lab = 2.5 and 7.5 deg. The extracted S1 exhibits characteristic values depending on the structure of the excited state. The S2 is close to zero over the measured excitation energy range. The SFP angular distribution data for the 2+ (4.44 MeV) and 1+ (12.71 MeV) states are well described by the microscopic DWIA calculations.
A study of interaction of neutron rich oxygen isotopes $^{17,18}$O with light targets has been undertaken in order to determine the optical potentials needed for the transfer reaction $^{13}$C($^{17}$O,$^{18}$O)$^{12}$C. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the $^{17}$F(p,$gamma$)$^{18}$Ne which is essential to estimate the production of $^{18}$F at stellar energies in ONe novae. The success of the asymptotic normalization coefficient (ANC) as indirect method for astrophysics is guaranteed if the reaction mechanism is peripheral and the DWBA cross section calculations are warranted and stable against OMP used. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams before extending the procedures to rare ion beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of $^{17}$O, $^{18}$O and $^{16}$O projectiles is made.
Dissipative 12C+12C reactions at 95 MeV are fully detected in charge with the GARFIELD and RCo apparatuses at LNL. A comparison to a dedicated Hauser-Feshbach calculation allows to select events which correspond, to a large extent, to the statistical evaporation of highly excited 24Mg, as well as to extract information on the isotopic distribution of the evaporation residues in coincidence with their complete evaporation chain. Residual deviations from a statistical behaviour are observed in alpha yields and attributed to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay.
George Kahrimanis
,George Burleson
,C. M. Chen
.
(1997)
.
"Pion-nucleus elastic scattering on 12C, 40Ca, 90Zr, and 208Pb at 400 and 500 MeV"
.
Lisa Kurth Kerr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا