We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed at the MIT-Bates South Hall Ring over a range of four-momentum transfer squared $Q^2$ from 0.15 to 0.65 (GeV/c)$^2$. Significantly improved results on the proton electric and magnetic form factors are obtained in combination with previous cross-section data on elastic electron-proton scattering in the same $Q^2$ region.
We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio $G^{n}_{E}/G^{n}_{M}$ was extracted from the beam-target vector asymmetry $A_{ed}^{V}$ at four-momentum transfers $Q^{2}=0.14$, 0.20, 0.29 and 0.42 (GeV/c)$^{2}$.
First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction $vec gamma vec p to pi^+n$, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Julich, and SAID groups.
A comparison between polarization-transfer to a bound proton in quasi-free kinematics by the A$(vec{e},evec p)$ knockout reaction and that in elastic scattering off a free proton can provide information on the characteristics of the bound proton. In the past the reported measurements have been compared to those of a free proton with zero initial momentum. We introduce, for the first time, expressions for the polarization-transfer components when the proton is initially in motion and compare them to the $^2$H data measured at the Mainz Microtron (MAMI). We show the ratios of the transverse ($P_x$) and longitudinal ($P_z$) components of the polarization transfer in $^2textrm{H}(vec{e},evec p)textrm{n}$, to those of elastic scattering off a moving proton, assuming the protons initial (Fermi) momentum equals the negative missing momentum in the measured reaction. We found that the correction due to the proton motion is up to 20% at high missing momentum. However the effect on the double ratio $frac{(P_x/P_z)^A}{(P_x/P_z)^{^1!textrm{H}}}$ is largely canceled out, as shown for both $^2$H and $^{12}$C data. This implies that the kinematics is not the primary cause for the deviations between quasi-elastic and elastic scattering reported previously.
The recoil proton polarization has been measured in the p (vec e,evec p) pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2 and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz Microtron. Due to the spin precession in a magnetic spectrometer, all three proton polarization components P_x/P_e = (-11.4 pm 1.3 pm 1.4) %, P_y = (-43.1 pm 1.3 pm 2.2) %, and P_z/P_e = (56.2 pm 1.5 pm 2.6) % could be measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR = (-6.4pm 0.7_{stat}pm 0.8_{syst}) % was determined from P_x in the framework of the Mainz Unitary Isobar Model. The consistency among the reduced polarizations and the extraction of the ratio of longitudinal to transverse response is discussed.
A measurement of beam helicity asymmetries in the reaction 3He(e,en)pp has been performed at the Mainz Microtron in quasielastic kinematics in order to determine the electric to magnetic form factor ratio of the neutron, GEn/GMn, at a four momentum transfer Q2 = 1.58 GeV2. Longitudinally polarized electrons were scattered on a highly polarized 3He gas target. The scattered electrons were detected with a high-resolution magnetic spectrometer, and the ejected neutrons with a dedicated neutron detector composed of scintillator bars. To reduce systematic errors data were taken for four different target polarization orientations allowing the determination of GEn/GMn from a double ratio. We find mu_n GEn/GMn = 0.250 +/- 0.058(stat.) +/- 0.017 (sys.).
C.B. Crawford
,A. Sindile
,T. Akdogan
.
(2006)
.
"Measurement of the proton electric to magnetic form factor ratio from vec ^1H(vec e, ep)"
.
Christopher Crawford
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا