Do you want to publish a course? Click here

Dynamics Of Hadronization From Nuclear Semi Inclusive Deep Inelastic Scattering

135   0   0.0 ( 0 )
 Added by Kawtar Hafidi
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

The CLAS experiment E02-104, part of the EG2 run at Jefferson Lab, was performed to study the hadronization process using semi inclusive deep inelastic scattering off nuclei. Electron beam energy of 5 GeV and the CLAS large acceptance detector were used to study charged pion production. The high luminosity available at Jefferson Lab and the CLAS large acceptance are key factors for such measurements allowing high statistics and therefore multidimensional analyses of the data. Both the multiplicity ratio and the transverse momentum broadening for carbon, iron and lead relative to deuterium are measured. Preliminary results for positive pions are discussed.



rate research

Read More

The semi-inclusive deep inelastic scattering of electrons off a nucleus A with detection of a slow nucleus (A-1) in the ground or low excitation states, i.e. the process A(e,e(A-1))X, can provide useful information on the origin of the EMC effect and the mechanisms of hadronization. The theoretical description of the process is reviewed and the results of several calculations on few-body systems and complex nuclei are presented.
420 - B. Frois , P.J. Mulders 1994
We summarize the discussion on the possibilities of doing inclusive and semi-inclusive deep inelastic scattering experiments at CEBAF with beam energy of the order of 10 GeV.
First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.
Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality $Q^2>1~({rm GeV}/c)^2$. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/$c$ polarised muon beam impinging on a polarised $^6$LiD target. By analysing the full range in hadron transverse momentum $p_{rm T}$, the different $p_{rm T}$-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation $Delta g/g$ is evaluated at leading order in pQCD at a hard scale of $mu^2= langle Q^2 rangle = 3 ({rm GeV}/c)^2$. It is determined in three intervals of the nucleon momentum fraction carried by gluons, $x_{rm g}$, covering the range $0.04 !<! x_{ rm g}! <! 0.28$~ and does not exhibit a significant dependence on $x_{rm g}$. The average over the three intervals, $langle Delta g/g rangle = 0.113 pm 0.038_{rm (stat.)}pm 0.036_{rm (syst.)}$ at $langle x_{rm g} rangle approx 0.10$, suggests that the gluon polarisation is positive in the measured $x_{rm g}$ range.
The effects of the final state interaction in slow proton production in semi inclusive deep inelastic scattering processes off nuclei, A(e,ep)X, are investigated in details within the spectator and target fragmentation mechanisms; in the former mechanism, the hard interaction on a nucleon of a correlated pair leads, by recoil, to the emission of the partner nucleon, whereas in the latter mechanism proton is produced when the diquark, which is formed right after the visrtual photon-quark interaction, captures a quark from the vacuum. Unlike previous papers on the subject, particular attention is paid on the effects of the final state interaction of the hadronizing quark with the nuclear medium within an approach based upon an effective time-dependent cross section which combines the soft and hard parts of hadronization dynamics in terms of the string model and perturbative QCD, respectively. It is shown that the final state interaction of the hadronizing quark with the medium plays a relevant role both in deuteron and complex nuclei; nonetheless, kinematical regions where final state interaction effects are minimized can experimentally be selected, which would allow one to investigate the structure functions of nucleons embedded in the nuclear medium; likewise, regions where the interaction of the struck hadronizing quark with the nuclear medium is maximized can be found, which would make it possible to study non perturbative hadronization mechanisms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا