Do you want to publish a course? Click here

System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

124   0   0.0 ( 0 )
 Added by Edward Wenger
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.



rate research

Read More

We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 to K+ pi- and bar{K*0} to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $sqrt{s_{rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.
Transverse momentum spectra of pions, kaons, protons and antiprotons from Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV have been measured by the PHOBOS experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The identification of particles relies on three different methods: low momentum particles stopping in the first detector layers; the specific energy loss (dE/dx) in the silicon Spectrometer, and Time-of-Flight measurement. These methods cover the transverse momentum ranges 0.03-0.2, 0.2-1.0 and 0.5-3.0 GeV/c, respectively. Baryons are found to have substantially harder transverse momentum spectra than mesons. The pT region in which the proton to pion ratio reaches unity in central Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV fits into a smooth trend as a function of collision energy. At low transverse momenta, the spectra exhibit a significant deviation from transverse mass scaling, and when the observed particle yields at very low pT are compared to extrapolations from higher pT, no significant excess is found. By comparing our results to Au+Au collisions at sqrt(s_(NN)) = 200 GeV, we conclude that the net proton yield at midrapidity is proportional to the number of participant nucleons in the collision.
71 - B.B.Back , et al 2004
We have measured the transverse momentum distributions of charged hadrons in d+Au collisions at sqrt sNN = 200 GeV in the range of 0.5 < p_T < 4.0 GeV/c. The total range of pseudorapidity, eta, is 0.2 < eta < 1.4, where positive eta is in the deuteron direction. The data has been divided into three regions of pseudorapidity, covering 0.2 < eta < 0.6, 0.6 < eta < 1.0, and 1.0 < eta < 1.4 and has been compared to charged hadron spectra from p+pbar collisions at the same energy. There is a significant change in the spectral shape as a function of pseudorapidity. As eta increases we see a decrease in the nuclear modification factor RdAu.
Charged particle pseudorapidity distributions are presented from the PHOBOS experiment at RHIC, measured in Au+Au and Cu+Cu collisions at sqrt{s_NN}=19.6, 22.4, 62.4, 130 and 200 GeV, as a function of collision centrality. The presentation includes the recently analyzed Cu+Cu data at 22.4 GeV. The measurements were made by the same detector setup over a broad range in pseudorapidity, |eta|<5.4, allowing for a reliable systematic study of particle production as a function of energy, centrality and system size. Comparing Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the overall shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants, N_part. Detailed comparisons reveal that the matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of eta is better for the same N_part/2A value than for the same N_part value, where A denotes the mass number. In other words, it is the geometry of the nuclear overlap zone, rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا