A water Cherenkov luminosity monitor system with associated electronics has been developed for the A4 parity violation experiment at MAMI. The detector system measures the luminosity of the hydrogen target hit by the MAMI electron beam and monitors the stability of the liquid hydrogen target. Both is required for the precise study of the count rate asymmetries in the scattering of longitudinally polarized electrons on unpolarized protons. Any helicity correlated fluctuation of the target density leads to false asymmetries. The performance of the luminosity monitor, investigated in about 2000 hours with electron beam, and the results of its application in the A4 experiment are presented.
We present a new powerful liquid hydrogen target developed for the precise study of parity violating electron scattering on hydrogen and deuterium. This target has been designed to have minimal target density fluctuations under the heat load of a 20$mu$A CW 854.3 MeV electron beam without rastering the electron beam. The target cell has a wide aperture for scattered electrons and is axially symmetric around the beam axis. The construction is optimized to intensify heat exchange by a transverse turbulent mixing in the hydrogen stream, which is directed along the electron beam. The target is constructed as a closed loop circulating system cooled by a helium refrigerator. It is operated by a tangential mechanical pump with an optional natural convection mode. The cooling system supports up to 250 watts of the beam heating removal. Deeply subcooled liquid hydrogen is used for keeping the in-beam temperature below the boiling point. The target density fluctuations are found to be at the level 10$^{-3}$ at a beam current of 20 $mu$A.
We report on a comprehensive reinterpretation of the existing cross-section data for elastic electron-proton scattering obtained by the initial-state radiation technique, resulting in a significantly improved accuracy of the extracted proton charge radius. By refining the external energy corrections we have achieved an outstanding description of the radiative tail, essential for a detailed investigation of the proton finite-size effects on the measured cross-sections. This development, together with a novel framework for determining the radius, based on a regression analysis of the cross-sections employing a polynomial model for the form factor, led us to a new value for the charge radius, which is $(0.870 pm 0.014_mathrm{stat.}pm 0.024_mathrm{sys.} pm 0.003_mathrm{mod.}),mathrm{fm}$.
Significant progress has been made to experimentally determine a complete set of the parity-violating (PV) weak-interaction amplitudes between nucleons. In this paper we describe the design, construction and operation of the n$^3$He experiment that was used to measure the PV asymmetry $A_{mathrm{PV}}$ in the direction of proton emission in the reaction $vec{mathrm{n}} + {^3}mathrm{He} rightarrow {^3}mathrm{H} + mathrm{p}$, using the capture of polarized cold neutrons in an unpolarized gaseous $^3mathrm{He}$ target. This asymmetry has was recently calculated cite{Viviani,Viviani2}, both in the traditional style meson exchange picture, and in effective field theory (EFT), including two-pion exchange. The high precision result (published separately) obtained with the experiment described herein forms an important benchmark for hadronic PV (HPV) theory in few-body systems, where precise calculations are possible. To this day, HPV is still one of the most poorly understood aspects of the electro-weak theory. The calculations estimate the size of the asymmetry to be in the range of $(-9.4 rightarrow 3.5)times 10^{-8}$, depending on the framework or model. The small size of the asymmetry and the small overall goal uncertainty of the experiment of $delta A_{mathrm{PV}} simeq 1times10^{-8}$ places strict requirements on the experiment, especially on the design of the target-detector chamber. In this paper we describe the experimental setup and the measurement methodology as well as the detailed design of the chamber, including results of Garfield++ and Geant4 simulations that form the basis of the chamber design and analysis. We also show data from commissioning and production and define the systematic errors that the chamber contributes to the measured $A_{mathrm{PV}}$. We give the final uncertainty on the measurement.
In February 2007, the fourth stage of the Mainz Microtron, MAMI-C, started operations with a first experiment. The new Harmonic Double-Sided Microtron delivers an electron beam with energies up to 1.5 GeV while preserving the excellent beam quality of the previous stages. The experimental program at MAMI is focused on studies of the hadron structure in the domain of non-perturbative QCD. In this paper, a few prominent selections of the extensive physics program at MAMI-C will be presented.
The parity-violating electron scattering community has made tremendous progress over the last twenty five years in their ability to measure tiny asymmetries of order 100 parts per billion (ppb) with beam-related corrections and systematic errors of a few ppb. Future experiments are planned for about an order of magnitude smaller asymmetries and with higher rates in the detectors. These new experiments pose new challenges for the beam instrumentation and for the strategy for setting up the beam. In this contribution to PAVI14 I discuss several of these challenges and demands, with a focus on developments at Jefferson Lab.