Do you want to publish a course? Click here

Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium

62   0   0.0 ( 0 )
 Added by Paolo Maria Milazzo
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (the quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.



rate research

Read More

The isotope yields of fragments, produced in the decay of the quasiprojectile in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the disassembly of the unique source formed in Xe+Cu central reactions at 30 MeV/nucleon, were measured. We show that the relative yields of neutron-rich isotopes increase with the excitation energy in multifragmentation reaction. In the framework of the statistical multifragmentation model which fairly well reproduces the experimental observables, this behaviour can be explained by increasing N/Z ratio of hot primary fragments, that corresponds to the statistical evolution of the decay mechanism with the excitation energy: from a compound-like decay to complete multifragmentation.
The isospin properties of primary and secondary fragments produced in multifragmentation of Fe + Ni and Fe + Fe systems with respect to Ni + Ni system are analyzed within the statistical multifragmentation model framework. The reduced neutron and proton densities show an asymmetry in the primary fragments, that is lessened after secondary decay. with increasing isospin (N/Z) this effect increases, while the sensitivity of fragment isospin towards excitation energy and N/Z of the primary fragments remains unchanged.
125 - S. R. Souza , B. V. Carlson , 2018
The deexcitation of the primary hot fragments, produced in the breakup of an excited nuclear source, during their propagation under the influence of their mutual Coulomb repulsion is studied in the framework of a recently developed hybrid model. The latter is based on the Statistical Mul- tifragmentation Model (SMM), describing the prompt breakup of the source, whereas the particle emission from the hot fragments, that decay while traveling away from each other, is treated by the Weisskopf-Ewing evaporation model. Since this treatment provides an event by event descrip- tion of the process, in which the classical trajectories of the fragments are followed using molecular dynamics techniques, it allows one to study observables such as two-particle correlations and infer the extent to which the corresponding observables may provide information on the multifragment production mechanisms. Our results suggest that the framework on which these treatments are based may be considerably constrained by such analyses. Furthermore, they imply that information obtained from these model calculations may provide feedback to the theory of nuclear interferome- try. We also found that neutron deficient fragments should hold information more closely related to the breakup region than neutron rich ones, as they are produced in much earlier stages of the post breakup dynamics than the latter.
Yields of equatorially emitted light isotopes, $1le Zle 14$, observed in ternary fission in the reaction $^{241}$Pu($n_{rm th}$,f) are employed to determine apparent chemical equilibrium constants for low-temperature and low-density nuclear matter. The degree of liberation and role of medium modifications are probed through a comparison of experimentally derived reaction quotients with equilibrium constants calculated using a relativistic mean-field model employing a universal medium modification correction for the attractive $sigma$ meson coupling. The results of these comparisons indicate that equilibrium is achieved for the lighter ternary fission isotopes. For the heavier isotopes experimental reaction quotients are well below calculated equilibrium constants. This is attributed to a dynamical limitation reflecting insufficient time for full equilibrium to develop. The role of medium effects leading to yield reductions is discussed as is the apparent enhancement of yields for $^8$He and other very neutron rich exotic nuclei.
103 - G. T~ab~acaru 2005
Kinetic energy spectra and fragment velocity correlations, simulated by means of stochastic mean-field calculations, are successfully confronted with experimental data for single multifragmenting sources prepared at the same excitation energy per nucleon in 32 AMeV 129Xe+natSn and 36 AMeV 155Gd+natU central collisions. Relying thus on simulations, average freeze-out times of 200-240 fm/c are estimated The corresponding spatial distributions of fragments are more compact for the lighter system (~3-4V_0 vs ~8V_0).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا