Do you want to publish a course? Click here

Ratios of Elastic Scattering of Pions from 3H and 3He

82   0   0.0 ( 0 )
 Added by William J. Briscoe
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We have measured the elastic-scattering ratios of normalized yields for charged pions from 3H and 3He in the backward hemisphere. At 180 MeV, we completed the angular distribution begun with our earlier measurements, adding six data points in the angular range of 119 deg to 169 deg in the pi-nucleus center of mass. We also measured an excitation function with data points at 142, 180, 220, and 256 MeV incident pion energy at the largest achievable angle for each energy between 160 deg and 170 deg in the pi-nucleus center of mass. This excitation function corresponds to the energies of our forward-hemisphere studies. The data, taken as a whole, show an apparent role reversal of the two charge-symmetric ratios r1 and r2 in the backward hemisphere. Also, for data > 100 deg we observe a strong dependence on the four-momentum transfer squared (-t) for all of the ratios regardless of pion energy or scattering angle, and we find that the superratio R data match very well with calculations based on the forward-hemisphere data that predicts the value of the difference between the even-nucleon radii of 3H and 3He. Comparisons are also made with recent calculations incorporating different wave functions and double scattering models.



rate research

Read More

We report on a microscopic calculation of n-3H and p-3He scattering employing the Argonne v_{18} and v_8 nucleon-nucleon potentials with and without additional three-nucleon force. An R-matrix analysis of the p-3He and n-3H scattering data is presented. Comparisons are made for the phase shifts and a selection of measurements in both scattering systems. Differences between our calculation and the R-matrix results or the experimental data can be attributed to only two partial waves (3P0 and 3P2). We find the effect of the Urbana IX and the Texas-Los Alamos three-nucleon forces on the phase shifts to be negligible.
p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been employed and their results for both elastic and charge-exchange processes are compared. We observe a good agreement between the three different methods, thus the obtained results may serve as a benchmark. A comparison with the available experimental data is also reported and discussed.
166 - A. Watanabe , S. Nakai , Y. Wada 2021
We present a precise measurement of the cross section, proton and $rm ^3He$ analyzing powers, and spin correlation coefficient $C_{y,y}$ for $p$-$rm ^3He$ elastic scattering near 65 MeV, and a comparison with rigorous four-nucleon scattering calculations based on realistic nuclear potentials and a model with $Delta$-isobar excitation. Clear discrepancies are seen in some of the measured observables in the regime around the cross section minimum. Theoretical predictions using scaling relations between the calculated cross section and the $rm ^3 He$ binding energy are not successful in reproducing the data. Large sensitivity to the $NN$ potentials and rather small $Delta$-isobar effects in the calculated cross section are noticed as different features from those in the deuteron-proton elastic scattering. The results obtained above indicate that $p$-$rm ^3He$ scattering at intermediate energies is an excellent tool to explore nuclear interactions not accessible by three-nucleon scattering.
135 - Arman Margaryan 2018
We report observables for elastic Compton scattering from $^3$He in Chiral Effective Field Theory with an explicit $Delta(1232)$ degree of freedom ($chi$EFT) for energies between 50 and 120 MeV. The $gamma,{}^3$He amplitude is complete at N3LO, $mathcal{O}(e^2delta^3)$, and in general converges well order by order. It includes the dominant pion-loop and two-body currents, as well as the Delta excitation in the single-nucleon amplitude. Since the cross section is two to three times that for deuterium and the spin of polarised $^3$He is predominantly carried by its constituent neutron, elastic Compton scattering promises information on both the scalar and spin polarisabilities of the neutron. We study in detail the sensitivities of 4 observables to the neutron polarisabilities: the cross section, the beam asymmetry and two double asymmetries resulting from circularly polarised photons and a longitudinally or transversely polarised target. Including the Delta enhances those asymmetries from which neutron spin polarisabilities could be extracted. We also correct previous, erroneous results at N2LO, i.e.~without an explicit Delta, and compare to the same observables on proton, neutron and deuterium targets. An interactive Mathematica notebook of our results is available from [email protected].
In a kinematically complete experiment at the Mainz microtron MAMI, pion angular distributions of the $^3$He(e,e$pi^+)^3$H reaction have been measured in the excitation region of the $Delta$ resonance to determine the longitudinal ($L$), transverse ($T$), and the $LT$ interference part of the differential cross section. The data are described only after introducing self-energy modifications of the pion and $Delta$-isobar propagators. Using Chiral Perturbation Theory (ChPT) to extrapolate the pion self energy as inferred from the measurement on the mass shell, we deduce a reduction of the $pi^+$ mass of $Delta m_{pi^+} = (-1.7^{+ 1.7}_{- 2.1})$ MeV/c$^2$ in the neutron-rich nuclear medium at a density of $rho = (0.057^{+ 0.085}_{- 0.057})$ fm$^{-3}$. Our data are consistent with the $Delta$ self energy determined from measurements of $pi^0$ photoproduction from $^4$He and heavier nuclei.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا