A review on experimental results for direct photon production in heavy ion reactions is given. A brief survey of early direct photon limits from SPS experiments is presented. The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to theoretical calculations. An outlook on the perspective of photon measurements at RHIC is given.
Direct photon spectra and elliptic flow v2 in heavy-ion collisions at RHIC and LHC energies are investigated within a relativistic transport approach incorporating both hadronic and partonic phases - the Parton-Hadron-String Dynamics (PHSD). The results suggest that a large v2 of the direct photons - as observed by the PHENIX Collaboration - signals a significant contribution of photons produced in interactions of secondary mesons and baryons in the late stages of the collision. In order to further differentiate the origin of the direct photon azimuthal asymmetry, we compare our predictions for the centrality dependence of the direct photon yield to the recent measurements by the PHENIX Collaboration and provide predictions for Pb+Pb collisions at LHC energies with respect to the direct photon spectra and v2(pT) for 0-40% centrality.
We present results for the measurement of $phi$ meson production via its charged kaon decay channel $phi to K^+K^-$ in Au+Au collisions at $sqrt{s_{_{NN}}}=62.4$, 130, and 200 GeV, and in $p+p$ and $d$+Au collisions at $sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity ($|y|<0.5$) $phi$ meson transverse momentum ($p_{T}$) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the $p_{T}$ spectra from $p+p$, $d$+Au and peripheral Au+Au collisions show power-law tails at intermediate and high $p_{T}$ and are described better by Levy distributions. The constant $phi/K^-$ yield ratio vs beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $phi$ production at RHIC. The $Omega/phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}sim 4$ GeV/$c$, but disagrees at higher transverse momenta. The measured nuclear modification factor, $R_{dAu}$, for the $phi$ meson increases above unity at intermediate $p_{T}$, similar to that for pions and protons, while $R_{AA}$ is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both $R_{cp}$ and $v_{2}$ for the $phi$ meson with respect to other hadrons in Au+Au collisions at $sqrt{s_{_{NN}}}$=200 GeV at intermediate $p_{T}$ is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate $p_{T}$ region at RHIC.
The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au collisions at SPS and RHIC energies, respectively, are analysed within a two-source statistical model of an ideal hadron gas. These two sources represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.
These proceedings present a brief overview of the main results on jet-modifications in heavy ion collisions at RHIC. In heavy ion collisions, jets are studied using single hadron spectra and di-hadron correlations with a high-pt{} trigger hadrons. At high pt, a suppression of the yields due to parton energy loss is observed. A quantitative confrontation of the data with various theoretical approaches to energy loss in a dense QCD medium is being pursued. First results from $gamma$-jet events, where the photon balances the initial jet energy, are also presented and compared to expectations from models based on di-hadron measurements. At intermediate pt, two striking modifications of the di-hadron correlation structure are found in heavy ion collisions: the presence of a long-range {it ridge} structure in deta{}, and a large broadening of the recoil jet. Both phenomena seem to indicate an interplay between hard and soft physics.
Investigation of intermediate-velocity particle production is performed on entrance channel mass asymmetric collisions of 58Ni+C and 58Ni+Au at 34.5 MeV/nucleon. Distinctions between prompt pre-equilibrium ejections, multiple neck ruptures and an alternative phenomenon of delayed aligned asymmetric breakup is achieved using source reconstructed correlation observables and time-based cluster recognition in molecular dynamics simulations.