Do you want to publish a course? Click here

Bifurcations and sudden current change in ensembles of classically chaotic ratchets

95   0   0.0 ( 0 )
 Added by Kenfack Anatole
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

In prl 84, 258 (2000), Mateos conjectured that current reversal in a classical deterministic ratchet is associated with bifurcations from chaotic to periodic regimes. This is based on the comparison of the current and the bifurcation diagram as a function of a given parameter for a periodic asymmetric potential. Barbi and Salerno, in pre 62, 1988 (2000), have further investigated this claim and argue that, contrary to Mateos claim, current reversals can occur also in the absence of bifurcations. Barbi and Salernos studies are based on the dynamics of one particle rather than the statistical mechanics of an ensemble of particles moving in the chaotic system. The behavior of ensembles can be quite different, depending upon their characteristics, which leaves their results open to question. In this paper we present results from studies showing how the current depends on the details of the ensemble used to generate it, as well as conditions for convergent behavior (that is, independent of the details of the ensemble). We are then able to present the converged current as a function of parameters, in the same system as Mateos as well as Barbi and Salerno. We show evidence for current reversal without bifurcation, as well as bifurcation without current reversal. We conjecture that it is appropriate to correlate abrupt changes in the current with bifurcation, rather than current reversals, and show numerical evidence for our claims.

rate research

Read More

61 - I. Varga , P. Pollner , 1999
We show that strongly localized wave functions occur around classical bifurcations. Near a saddle node bifurcation the scaling of the inverse participation ratio on Plancks constant and the dependence on the parameter is governed by an Airy function. Analytical estimates are supported by numerical calculations for the quantum kicked rotor.
We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic transport in the absence of an average force. We discuss general conditions for such directed transport, like a mixed classical phase space, and elucidate a sum rule that relates the contributions of different phase-space components to transport with each other. We show that regular ratchet transport can be directed against an external potential gradient while chaotic ballistic transport is restricted to unbiased systems. For quantized Hamiltonian ratchets we study transport in terms of the evolution of wave packets and derive a semiclassical expression for the distribution of level velocities which encode the quantum transport in the Floquet band spectra. We discuss the role of dynamical tunneling between transporting islands and the chaotic sea and the breakdown of transport in quantum ratchets with broken spatial periodicity.
We analyze the origin and properties of the chaotic dynamics of two atomic ensembles in a driven-dissipative experimental setup, where they are collectively damped by a bad cavity mode and incoherently pumped by a Raman laser. Starting from the mean-field equations, we explain the emergence of chaos by way of quasiperiodicity -- presence of two or more incommensurate frequencies. This is known as the Ruelle-Takens-Newhouse route to chaos. The equations of motion have a $mathbb{Z}_{2}$-symmetry with respect to the interchange of the two ensembles. However, some of the attractors of these equations spontaneously break this symmetry. To understand the emergence and subsequent properties of various attractors, we concurrently study the mean-field trajectories, Poincar{e} sections, maximum and conditional Lyapunov exponents, and power spectra. Using Floquet analysis, we show that quasiperiodicity is born out of non $mathbb{Z}_{2}$-symmetric oscillations via a supercritical Neimark-Sacker bifurcation. Changing the detuning between the level spacings in the two ensembles and the repump rate results in the synchronization of the two chaotic ensembles. In this regime, the chaotic intensity fluctuations of the light radiated by the two ensembles are identical. Identifying the synchronization manifold, we understand the origin of synchronized chaos as a tangent bifurcation intermittency of the $mathbb{Z}_{2}$-symmetric oscillations. At its birth, synchronized chaos is unstable. The interaction of this attractor with other attractors causes on-off intermittency until the synchronization manifold becomes sufficiently attractive. We also show coexistence of different phases in small pockets near the boundaries.
We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.
We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a class of quantum eigenstates, called the channel localized states. For these states, the entanglement is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near a anti-pitchfork bifurcation. We place these results in the context of the close connections that may exist between entanglement measures and conventional measures of localization that have been much studied in quantum chaos and elsewhere. We also point to an interesting near-degeneracy that arises in the spectrum of reduced density matrices of certain states as an interplay of localization and symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا