No Arabic abstract
We present two phenomenological models for 2D turbulence in which the energy spectrum obeys a nonlinear fourth-order and a second-order differential equations respectively. Both equations respect the scaling properties of the original Navier-Stokes equations and it has both the -5/3 inverse-cascade and t -3 direct-cascade spectra. In addition, the fourth order equation has Raleigh-Jeans thermodynamic distributions, as exact steady state solutions. We use the fourth-order model to derive a relation between the direct-cascade and the inverse-cascade Kolmogorov constants which is in a good qualitative agreement with the laboratory and numerical experiments. We obtain a steady state solution where both the enstrophy and the energy cascades are present simultaneously and we discuss it in context of the Nastrom-Gage spectrum observed in atmospheric turbulence. We also consider the effect of the bottom friction onto the cascade solutions, and show that it leads to an additional decrease and finite-wavenumber cutoffs of the respective cascade spectra.
We consider sound wave propagation in a range-periodic acoustic waveguide in the deep ocean. It is demonstrated that vertical oscillations of a sound-speed perturbation, induced by ocean internal waves, influence near-axial rays in a resonant way, producing ray chaos and forming a wide chaotic sea in the underlying phase space. We study interplay between chaotic ray dynamics and wave motion with signal frequencies of 50-100 Hz. The Floquet modes of the waveguide are calculated and visualized by means of the Husimi plots. Despite of irregular phase space distribution of periodic orbits, the Husimi plots display the presence of ordered peaks within the chaotic sea. These peaks, not being supported by certain periodic orbits, draw the specific chainlike pattern, reminiscent of KAM resonance. The link between the peaks and KAM resonance is confirmed by ray calculations with lower amplitude of the sound-speed perturbation, when the periodic orbits are well-ordered. We associate occurrence of the peaks with the recovery of ordered periodic orbits, corresponding to KAM resonance, due to suppressing of wavefield sensitivity to small-scale features of the sound-speed profile.
Turbulent boundary layers exhibit a universal structure which nevertheless is rather complex, being composed of a viscous sub-layer, a buffer zone, and a turbulent log-law region. In this letter we present a simple analytic model of turbulent boundary layers which culminates in explicit formulae for the profiles of the mean velocity, the kinetic energy and the Reynolds stress as a function of the distance from the wall. The resulting profiles are in close quantitative agreement with measurements over the entire structure of the boundary layer, without any need of re-fitting in the different zones.
A detailed comparison between data from experimental measurements and numerical simulations of Lagrangian velocity structure functions in turbulence is presented. By integrating information from experiments and numerics, a quantitative understanding of the velocity scaling properties over a wide range of time scales and Reynolds numbers is achieved. The local scaling properties of the Lagrangian velocity increments for the experimental and numerical data are in good quantitative agreement for all time lags. The degree of intermittency changes when measured close to the Kolmogorov time scales or at larger time lags. This study resolves apparent disagreements between experiment and numerics.
A variational framework is defined for vertical slice models with three dimensional velocity depending only on x and z. The models that result from this framework are Hamiltonian, and have a Kelvin-Noether circulation theorem that results in a conserved potential vorticity in the slice geometry. These results are demonstrated for the incompressible Euler--Boussinesq equations with a constant temperature gradient in the $y$-direction (the Eady--Boussinesq model), which is an idealised problem used to study the formation and subsequent evolution of weather fronts. We then introduce a new compressible extension of this model. Unlike the incompressible model, the compressible model does not produce solutions that are also solutions of the three-dimensional equations, but it does reduce to the Eady--Boussinesq model in the low Mach number limit. This means that this new model can be used in asymptotic limit error testing for compressible weather models running in a vertical slice configuration.
The macroturbulent atmospheric circulation of Earth-like planets mediates their equator-to-pole heat transport. For fast-rotating terrestrial planets, baroclinic instabilities in the mid-latitudes lead to turbulent eddies that act to transport heat poleward. In this work, we derive a scaling theory for the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanet atmospheres. This theory is built on the work of Jansen & Ferrari (2013), and determines how unstable the atmosphere is to baroclinic instability (the baroclinic criticality) through a balance between the baroclinic eddy heat flux and radiative heating/cooling. We compare our scaling theory to General Circulation Model (GCM) simulations and find that the theoretical predictions for equator-to-pole temperature contrast and bulk lapse rate broadly agree with GCM experiments with varying rotation rate and surface pressure throughout the baroclincally unstable regime. Our theoretical results show that baroclinic instabilities are a strong control of heat transport in the atmospheres of Earth-like exoplanets, and our scalings can be used to estimate the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanets. These scalings can be tested by spectroscopic retrievals and full-phase light curves of terrestrial exoplanets with future space telescopes.