On linear stability of steady space-periodic magnetohydrodynamic systems to perturbations involving large periods


Abstract in English

I construct a complete asymptotic expansion of solutions to the problem of linear stability of three-dimensional steady space-periodic magnetohydrodynamic states to perturbations involving large periods. Eddy diffusivity tensor is derived for parity-invariant steady states. I present numerical evidences that if perturbations of the flow are permitted, then the effect of negative eddy diffusivity emerges at much larger magnetic molecular diffusivities than in the kinematic dynamo problem (where no perturbations of the flow are assumed).

Download