Do you want to publish a course? Click here

Continued fractions and transcendental numbers

105   0   0.0 ( 0 )
 Added by Boris Adamczewski
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

It is widely believed that the continued fraction expansion of every irrational algebraic number $alpha$ either is eventually periodic (and we know that this is the case if and only if $alpha$ is a quadratic irrational), or it contains arbitrarily large partial quotients. Apparently, this question was first considered by Khintchine. A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions. The main purpose of the present work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to new combinatorial transcendence criteria recently obtained by Adamczewski and Bugeaud.



rate research

Read More

It is well known that value at a non-zero algebraic number of each of the functions $e^{x}, ln x, sin x, cos x, tan x, csc x, sec x, cot x, sinh x,$ $ cosh x,$ $ tanh x,$ and $coth x$ is transcendental number (see Theorem 9.11 of cite{N}). In the work, we show that for any one of the above mentioned functions, $f(x)$, and for a polynomial $g(x)$ with rational coefficients the zero, if any, of the equation $f(x)=g(x)$ is a transcendental number. We also show that if $f(x)$ and $g(x)$ are polynomials with rational coefficients, then a zero of the equation $e^{f(x)}=g(x)$ is a transcendental number. Finally we show that the existence of an abelian group whose non-zero elements are transcendental numbers.
We exhibit a method to use continued fractions in function fields to find new families of hyperelliptic curves over the rationals with given torsion order in their Jacobians. To show the utility of the method, we exhibit a new infinite family of curves over $mathbb Q$ with genus two whose Jacobians have torsion order eleven.
The Rosen fractions are an infinite set of continued fraction algorithms, each giving expansions of real numbers in terms of certain algebraic integers. For each, we give a best possible upper bound for the minimum in appropriate consecutive blocks of approximation coefficients (in the sense of Diophantine approximation by continued fraction convergents). We also obtain metrical results for large blocks of ``bad approximations.
120 - Guo-Niu Han 2019
The Euler numbers occur in the Taylor expansion of $tan(x)+sec(x)$. Since Stieltjes, continued fractions and Hankel determinants of the even Euler numbers, on the one hand, of the odd Euler numbers, on the other hand, have been widely studied separately. However, no Hankel determinants of the (mixed) Euler numbers have been obtained and explicitly calculated. The reason for that is that some Hankel determinants of the Euler numbers are null. This implies that the Jacobi continued fraction of the Euler numbers does not exist. In the present paper, this obstacle is bypassed by using the Hankel continued fraction, instead of the $J$-fraction. Consequently, an explicit formula for the Hankel determinants of the Euler numbers is being derived, as well as a full list of Hankel continued fractions and Hankel determinants involving Euler numbers. Finally, a new $q$-analog of the Euler numbers $E_n(q)$ based on our continued fraction is proposed. We obtain an explicit formula for $E_n(-1)$ and prove a conjecture by R. J. Mathar on these numbers.
116 - Qiongqiong Pan , Jiang Zeng 2021
Recently, Lazar and Wachs (arXiv:1910.07651) showed that the (median) Genocchi numbers play a fundamental role in the study of the homogenized Linial arrangement and obtained two new permutation models (called D-permutations and E-permutations) for (median) Genocchi numbers. They further conjecture that the distributions of cycle numbers over the two models are equal. In a follow-up, Eu et al. (arXiv:2103.09130) further proved the gamma-positivity of the descent polynomials of even-odd descent permutations, which are in bijection with E-permutations by Foatas fundamental transformation. This paper merges the above two papers by considering a general moment sequence which encompasses the number of cycles and number of drops of E-permutations. Using the combinatorial theory of continued fraction, the moment connection enables us to confirm Lazar-Wachs conjecture and obtain a natural $(p,q)$-analogue of Eu et als descent polynomials. Furthermore, we show that the $gamma$-coefficients of our $(p,q)$-analogue of descent polynomials have the same factorization flavor as the $gamma$-coeffcients of Brandens $(p,q)$-Eulerian polynomials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا